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Abstract This paper leverages the lightweight characteristics of the YOLOv5 algorithm to enhance the performance 
of citrus fruit picking point detection by optimizing the enhanced feature representation of the YOLOv5 algorithm. In 
the original YOLOv5 network model, to improve the prior boxes obtained from the K-means clustering algorithm, 
the binary K-means+IoU algorithm is used to update the prior boxes for citrus fruit target detection. The ECANet 
attention mechanism is added to enhance the algorithm's ability to focus on important features and eliminate 
interference from irrelevant features. Combining WIoU-Loss as the loss function for the candidate boxes in the citrus 
fruit recognition network model achieves more precise citrus fruit target recognition. We analyze the optimization 
effects of the three strategies—the ECANet module, the K-means+IoU algorithm, and the WIoU loss function—on 
the YOLOv5 algorithm. Using the citrus fruit image data constructed in this paper under natural environmental 
conditions, we analyze the improved YOLOv5 algorithm's performance in detecting targets when citrus fruits overlap 
or are occluded. The experimental results of citrus fruit recognition show that the mAP value, precision P, recall R, 
and F1 value of the proposed recognition and detection method are 94.86%, 93.49%, 89.26%, and 0.88%, 
respectively. Moreover, the positioning error of citrus fruit targets does not exceed 2 mm. The proposed algorithm 
is proven to be effective and can provide reference for the motion target points of the end-effector of citrus picking 
robots. 
 
Index Terms YOLOv5, ECANet, WIoU-Loss, K-means, fruit target recognition 

I. Introduction 
Citrus fruits are the world's largest category of fruit, with 138 countries worldwide producing them. Among these, 
countries such as China, Brazil, India, Mexico, and the United States lead in production volume [1], [2]. China's 
citrus industry is structured into five major production zones, with both area and production volume ranking first 
globally, accounting for nearly one-third of the world's citrus production [3], [4]. However, citrus harvesting currently 
relies primarily on manual labor, which poses challenges such as high labor intensity, high production costs, and 
low productivity [5], [6]. Therefore, developing intelligent harvesting robots to replace manual labor and free humans 
from complex agricultural production holds significant importance [7], [8]. 

In recent years, advancements in computer vision and deep learning technologies have driven the widespread 
application of automated citrus classification and recognition systems based on image processing and machine 
learning [9], [10]. These systems can rapidly, efficiently, and accurately classify and identify citrus characteristics 
such as variety, grade, size, and color, thereby enhancing citrus quality assessment and market value, and providing 
robust technical support and assurance for agricultural production and marketing [11]-[13]. Deep learning methods 
demonstrate superior application performance in this field, with the most commonly used object detection algorithm 
being the YOLO series, which has been widely adopted [14]-[16]. YOLO is an object detection algorithm proposed 
by Redmon in 2016. Its core principle is to reformulate the object detection problem as a regression problem, using 
a single convolutional neural network structure to predict bounding boxes and class probabilities, thereby achieving 
faster processing speeds than other algorithms [17]-[20]. By integrating sensor and intelligent robotics technologies, 
efficient citrus harvesting and classification can be achieved, further enhancing agricultural production efficiency 
and quality [21]-[23]. However, the initial YOLO algorithm suffered from severe localization errors and low detection 
accuracy, necessitating improvements to achieve more precise citrus object recognition [24], [25]. 

Reference [26] conducted experiments using 1,200 citrus images and proposed a lightweight YOLO-MECD 
model based on the YOLOv11s architecture. Through comparative analysis, it was demonstrated that the YOLO-
MECD model achieves significant improvements in detection performance and computational efficiency. Reference 
[27] highlights the importance of citrus fruits in agriculture and proposes a fast detection algorithm for citrus fruits 
based on global context fusion. By introducing the AG-YOLO network to integrate context information, it effectively 
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addresses the issues of low detection accuracy and missed detections in citrus detection algorithms. Reference [28] 
proposes the YOLO-CIT model and integrates the R-LBP method to accurately identify citrus fruits at different 
maturity stages. The study indicates that the R-LBP algorithm can amplify the texture features of citrus fruits at 
different maturity stages, and the YOLO-CIT model combined with the R-LBP algorithm can identify the maturity of 
citrus fruits in complex environments. Literature [29] proposed a citrus recognition method based on the YOLOv4 
neural network and trained the network model under the Darknet framework, revealing that this recognition model 
can meet the real-time image recognition speed and accuracy requirements of citrus harvesting robots. Literature 
[30] proposes a high-precision, lightweight YOLOv4 detection method that can accurately and quickly detect citrus 
fruits in complex growth environments, providing support for the development of citrus harvesting robots. Literature 
[31] proposes a citrus detection and localization method based on improved YOLOv5s stereo vision technology. 
Through experiments, it demonstrates the recall rate of citrus detection under three different conditions: uneven 
lighting, weak lighting, and good lighting, and can achieve accurate and rapid detection and localization of citrus in 
complex environments. Literature [32] uses oranges as the experimental subject and proposes a deep learning-
based orange counting algorithm. This algorithm includes two sub-algorithms: OrangeYolo for detection and 
OrangeSort for tracking. It verifies that this method outperforms manual counting based on video in terms of fruit 
detection accuracy. Literature [33] utilized panoramic photography to collect images of citrus fruit trees and 
proposed an AC-YOLO-based citrus identification method in natural orchard environments, verifying that this 
method demonstrated good performance in identifying citrus fruits in natural orchard environments. Literature [34] 
addresses issues such as missed detections and false positives in citrus detection in complex orchard environments, 
proposing a citrus detection model based on an improved YOLOv5 algorithm. This model overcomes the issue of 
parameter sharing in convolutional operations, effectively improving detection accuracy, and provides important 
support for citrus localization and harvesting. Literature [35] proposes an improved multi-scale YOLO algorithm 
(improved-YOLOv3) aimed at achieving rapid and accurate identification of citrus fruits in field environments. 
Experimental validation demonstrates that this algorithm possesses strong robustness and higher detection 
accuracy, enabling citrus identification in complex environments. Literature [36] proposed the dense-truu-yolo model, 
which can effectively improve detection accuracy in cases of severe occlusion and overlap of citrus fruits. Literature 
[37] designed the citrus picking point localization workflow CPPL. Based on extensive experiments, CPPL achieved 
high citrus recognition accuracy, providing an efficient method for real-time citrus harvesting. The above studies 
emphasize the important role of citrus detection and recognition in effective citrus picking and propose improved 
algorithms and models for detecting and recognizing citrus, such as YOLOv5s, YOLOv4 neural networks, and 
YOLO-CIT, which can achieve precise recognition of citrus in complex environments. 

This paper collects citrus image data from natural environments to establish a citrus image dataset. Data 
augmentation techniques such as flipping and scaling are applied to optimize the training dataset. Evaluation 
metrics for citrus fruit object detection and algorithm localization-related evaluation metrics are proposed. The 
structure of the YOLOv5 algorithm is analyzed. Based on the YOLOv5 network model, the WIoU loss function is 
modified, the ECA attention mechanism is added, and the binary K-means+IoU algorithm is used to update the prior 
boxes for citrus fruit target detection. An improved YOLOv5-based citrus target recognition algorithm is proposed. 
Analyze the effectiveness of the improved YOLOv5 network model. Combine the constructed real citrus fruit dataset 
to analyze the actual detection performance and spatial localization error data of the improved YOLOv5 algorithm. 

II. Materials and Methods 
II. A. Dataset Construction 
The image data used in this experiment was obtained from on-site photography in an orchard. The photography 
location was the Citrus Research Institute of a certain university, and the equipment used was a Canon 60D and a 
smartphone. The images were saved in JPG format with a resolution of 4032×3072. 

To detect and identify target citrus fruits in a real harvesting environment, 2,134 images of citrus fruits at different 
angles, lighting conditions, distances, and sizes were collected. The original images were annotated using the Label 
Img tool and randomly divided into a training set of 1,400 images, a validation set of 400 images, and a test set of 
334 images. 

Additionally, to enhance the model's robustness and generalization capabilities and prevent overfitting, data 
augmentation was applied to the dataset prior to model training. The augmentation methods included flipping, 
scaling, random translation, blurring, and brightness adjustment. After data augmentation, 4,570 images of citrus 
fruits ready for picking were obtained, including 3,000 images for the training set, 1,000 images for the validation 
set, and 570 images for the test set. 
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II. B. Test Environment and Training Strategy 
The hardware environment used for training in this paper is a CPU Intel(R) Xeon(R) Gold 6242R CPU @ 3.10 GHz, 
GPU Tesla V100-PCIE 64GB×2, and 1TB of memory. 

The software environment is Ubuntu 20.04.1. The operating system is Python 3.8, PyTorch 1.10, Torchvision 0.11, 
CUDA 11.2, and cuDNN 8.2.0. 

The computer hardware environment for the recognition experiment is an Intel(R) Core(TM) i7-10875H CPU @ 
2.30 GHz, a GeForce RTX 2060 GPU, and 32GB × 2 of memory. The software environment consists of a Windows 
10 operating system, Python 3.8, PyTorch 1.10, Torchvision 0.11, CUDA 11.3, and cuDNN 8.2.0. 

After multiple parameter adjustment tests, the final model parameters selected for training are shown in Table 1. 

Table 1: Model parameter 

Parameter Numerical value Parameter Numerical value 

Image size 640×640 Maximum learning rate 0.001 

Optimizer Adam Momentum 0.6 

Batch Size 64 Epoch 500 

 
II. C. Evaluation Indicators 
Recognition accuracy is an important evaluation metric for citrus fruit target detection. Therefore, this paper selects 
accuracy rate P , recall rate R , average precision 

PA , and mean average precision 
APm  as evaluation metrics 

for the target detection model. Among these, P  reflects the model's precision, R  reflects the model's recall, 
PA  

reflects the average precision for a single category, and 
APm   reflects the mean average precision across all 

categories. The specific calculation methods are as follows: 

  
100%p

p p

T
P

T F
 


 (1) 

  
100%p

p N

T
R

T F
 


 (2) 

 
1

0

( )pA P R dR   (3) 

 
1

1
i

N

AF r
i

m A
N 

   (4) 

Among these, 
pT  denotes the number of correctly identified target fruits where the model predicts a positive 

sample and the actual result is also a positive sample. 
pF  denotes the number of false positives where the model 

predicts a positive sample but the actual result is a negative sample. 
NF   represents the number of samples 

incorrectly identified as negative samples when the model predicts a negative sample and the actual result is a 
positive sample. 

The primary function of the algorithm in this paper is to achieve more accurate identification and spatial 
localization of obscured citrus fruits, obtaining the spatial coordinates of the center of mass and the fruit diameter 
of the target fruit, thereby providing reference points for the motion targets of the end-effector of the citrus harvesting 
robot. 

The evaluation metric for the algorithm's fitting accuracy is the overlap ratio between the fitted contour of the 
target fruit and the area of pixels within the manually annotated fruit contour region, calculated using the following 
formula: 

 100%rQ Q
C

Q


   (5) 

In the equation, C   represents the overlap degree, Q   represents the number of pixels within the manually 

annotated fruit contour region, and 
rQ  represents the number of pixels within the fitted contour. 
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In actual experiments, it is difficult to accurately obtain the actual spatial coordinates of the target fruit, so it is not 
suitable to evaluate the positioning accuracy of the algorithm based on the spatial position error of the centroid. 
Therefore, the spatial position of the occluded citrus fruit is compared with its spatial position when not occluded to 
evaluate the positioning effect of the algorithm. 

The formula for calculating the positioning error of the algorithm is: 

 2 2 2( ) ( ) ( )i j i j i jx x y y z z        (6) 

In the equation,    represents the algorithm's positioning error, and , ,i i ix y z   represent the estimated three-

dimensional spatial coordinates of the citrus fruit in an unobstructed state. , ,j j jx y z  are the algorithm-estimated 

three-dimensional spatial coordinates of the same citrus fruit in an occluded state. 

III. Algorithm 
III. A. YOLOv5 Algorithm 
YOLOv5 is a relatively mature algorithm in the YOLO algorithm series, characterized by its highly lightweight model. 
It not only excels in object detection but also performs exceptionally well in classification and localization tasks 
involved in object recognition. As a result, subsequent iterations of the YOLO series have been developed with 
minor modifications based on YOLOv5 [38]-[40]. 

Based on different network depths and widths, YOLOv5 can be categorized into YOLOv5m, YOLOv5s, YOLOv5l, 
and YOLOv5x. This paper focuses on research based on YOLOv5s. 

The YOLOv5s model consists of four core components: the input layer, the backbone, the neck, and the detection 
component. 

(1) The input layer preprocesses the detection images and uniformly adjusts the format of all images to a size of 
640 pixels × 640 pixels, which are then input into the next component (backbone). 

(2) The backbone section primarily includes multiple structures such as the Focus structure, convolutional 
structure, C3, and SPP. The primary task of the Focus structure is slicing, which expands the number of channels. 
This not only improves the model's computational speed but also ensures that image information is not lost. The 
convolutional structure performs convolution processing on the image to enhance the network's expressive 
capabilities. While extracting image features, it introduces nonlinear activation function feature information into 
deeper layers of the network. The C3 structure performs residual convolution on images to avoid the vanishing 
gradient problem that occurs as the network deepens. The SPP structure primarily performs multi-scale feature 
fusion operations on images. 

(3) The Neck section also includes multiple main structures, such as convolution, upsampling, downsampling, 
and C3. The C3 structure is primarily composed of residual convolution structures. Additionally, the Neck section 
enables the transmission of image feature information from high-level to low-level and from low-level to high-level, 
thereby enabling the YOLOv5 network to simultaneously detect large and small objects. 

(4) The Output section consists of three Head structures. The Head structure outputs the object's class 
information and corresponding confidence scores, as well as the corresponding positions of different predicted 
bounding boxes. 

Since all convolutions in the YOLOv5 network are standard convolutions, and citrus fruits have small volumes, 
occupy few image pixels, and suffer from occlusion issues, as well as uneven scale distributions at different 
distances, the object detection model based on the YOLOv5 algorithm performs poorly. Based on the 
aforementioned issues, this paper further improves the model's feature extraction performance and enhances the 
feature fusion performance across different scale channels. 

 
III. B. Improvements to YOLOv5 
III. B. 1) Optimization of A Priori Boxes 
The selection of a priori boxes is a crucial component in object detection, as appropriate a priori boxes can enhance 
the detection accuracy of the algorithm. This paper employs the binary K-means + IoU algorithm to recalculate prior 
boxes suitable for citrus object detection, thereby improving the accuracy and speed of the detection algorithm. IoU 
stands for Intersection-over-Union, which represents the ratio of the intersection between the predicted box and the 
true box to the union between the predicted box and the true box, where A denotes the predicted box and B denotes 
the true box. The formula for IoU is given in Equation (7): 
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Due to the limitations of the K-means algorithm, this paper adopts the binary K-means algorithm as a replacement 
for the K-means algorithm. Additionally, the Euclidean distance criterion in the algorithm is modified to the 1-IoU 
distance to achieve better clustering results. The citrus dataset is re-clustered to reduce errors and enhance the 
accuracy of the object detection algorithm. 

The computational process of the binary K-means algorithm is shown in Figure 1, and the steps are as follows: 
(1) Treat all sample points in the dataset as a single cluster. 
(2) Calculate the total error for each cluster. 
(3) Select a cluster and perform K-means clustering with k=2. 
(4) Calculate the total error after dividing the cluster into two parts. 
(5) Select the cluster with the smallest SSE error for the division operation. 
(6) Repeat steps 2–3 until the number of clusters reaches the specified k value. 

Start

For each cluster, calculate the total error.

Select the cluster that minimises the SSE 
error for partitioning.

Select two sample points from the cluster 
as the new cluster centres.

Calculate the 1-IoU distance from all remaining 
sample points in the cluster to the two cluster centres

Assign sample points to the two clusters 
based on the 1-IoU distance

Recalculate the cluster centres

Check if the centres
 have changed

Calculate the number of clusters k

Check if k equals
 the specified value

Output the clustering results

End

N

N

Y

Y

 

Figure 1: Binary k-means computing process 

III. B. 2) Integration of Attention Module 
Currently, widely used attention mechanisms include SENet, ECANet, and CBAM. 

SENet is an attention mechanism that focuses on the channel dimension. 
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CBAM typically first applies a channel attention module to the input feature map, then applies a spatial attention 
module to the newly processed feature map. 

ECANet is another implementation of a channel attention mechanism and can be viewed as an improved version 
of SENet [41]. Unlike SENet, ECANet directly uses a 1×1 convolution layer after global average pooling, eliminating 
the fully connected layer, thereby avoiding dimension reduction. ECANet achieves cross-channel information 
interaction through one-dimensional convolution, with the size of the convolution kernel adaptively varying via a 
function, whose expression is given by Equation (8): 

 2log ( )c b
k

 
   (8) 

In the equation, 2   , and 2b   . ECANet performs global average pooling on the input feature map, 

transforming the feature map from a matrix of  , ,h w c   to a vector of  1,1,c  . The adaptive one-dimensional 

convolution kernel is then applied to the one-dimensional convolution to obtain the weights for each channel of the 
feature map. Finally, the normalized weights are multiplied by the original input feature map channel by channel to 
generate the weighted feature map. The ECANet attention mechanism uses convolution layers with very few 
parameters to replace fully connected layers with high parameter requirements, enabling the network model to have 
appropriate cross-channel interaction capabilities while significantly reducing complexity. 

After analyzing the attention modules of SENet, ECANet, and CBAM, this paper adopts the ECANet attention 
mechanism as a method to improve the YOLOv5 model, enhancing the ability to focus on important features and 
reducing interference from irrelevant features through the ECANet module. 

 
III. B. 3) Improvements to the IoU-Loss Algorithm 
In the non-maximum suppression algorithm, the localization loss function calculates the distance deviation between 
the final output prediction box and the true box. Through error backpropagation, the weight parameter values are 
adjusted so that the output prediction box continuously approaches the true box. 

In the YOLOv5 algorithm, the localization loss function uses CIoU-Loss. In addition, there are other loss functions: 
GIoU-Loss, DIoU-Loss, etc. 

GIoU-Loss is an improvement over IoU-Loss, with its calculation formula given by Equation (9). C  represents 

the minimum bounding rectangle between bounding boxes A  and B  and effectively measures the similarity of 
non-overlapping regions between bounding boxes. When two bounding boxes are in an inclusive relationship, GIoU 
degenerates into IoU and cannot distinguish relative similarity. The formula is: 

 1GIoU

C A B
L IoU

C
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 

 (9) 

To address the issues associated with GIoU-Loss, DIoU-Loss omits the calculation of the minimum bounding 
rectangle area and introduces two bounding box distance variables to assist in measuring the similarity between 
two bounding boxes. The calculation formula is as follows: 
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In the equation, b  is the center point of the predicted box, gtb  is the center point of the target box,   is the 

Euclidean distance between the two center points, and c  is the diagonal distance of the smallest rectangle that 
can simultaneously cover both the predicted box and the true box. 

Similar to GIoU-Loss, DIoU-Loss has a non-zero gradient when there is no intersection with the ground truth box, 
enabling optimization. By introducing a size difference term, CIoU can better handle changes in object shape and 
size differences, thereby providing a more accurate similarity metric. Its loss formula is defined as follows: 
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A good loss function should reduce the penalty for geometric factors when the ground truth boxes and predicted 
boxes overlap well, and less intervention during training can help the model achieve better generalization 
capabilities. WIoU-Loss builds on this by incorporating distance attention, which includes a dynamic non-monotonic 
mechanism. It designs a reasonable gradient gain distribution strategy that reduces large or harmful gradients in 
extreme samples. The formula for WIoU-Loss is shown in Equation (14): 
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In the equation,    and    are adjustable hyperparameters, 
IoUL   is the IoU-Loss, and    represents the 

outlier degree of the candidate box, where a smaller outlier degree indicates higher quality of the candidate box. 
After analyzing and comparing the advantages and disadvantages of various IoU loss functions, this paper 

decides to adopt WIoU-Loss as the loss function for candidate boxes in the citrus recognition network model. 

IV. Test results and analysis 
IV. A. Improved network model performance 
IV. A. 1) Attention Module Comparison Test 
To verify the impact of different attention mechanisms on the recognition performance of the proposed model, five 
attention mechanisms—ECANet, SE, CA, CBAM, and ECA—were respectively inserted into the network without 
modification, yielding the results of the attention mechanism comparison experiment. The results of the attention 
mechanism comparison experiment are shown in Table 2. 

As shown in the table, the average precision and accuracy of the SE and CA modules inserted into the network 
are significantly lower than those of the ECANet and ECA modules. However, the recall rate improvement of the 
ECANet module is significantly higher than that of the ECA module. Compared to the other three networks, ECANet 
can consider both the spatial features of citrus target images and the channel features of images. Therefore, 
ECANet was selected for insertion into the backbone network. 

Table 2: The attention mechanism compares the results of the test 

Attention model Accuracy rate/% Recall rate/% Mean accuracy/% Model memory usage/MB 

SE 89.63 85.23 90.24 15.20 

CA 87.04 84.75 91.69 15.20 

CBAM 92.22 89.14 92.75 15.20 

ECA 93.75 90.25 94.39 15.20 

ECANet 96.39 93.67 97.07 15.20 

 
IV. A. 2) Loss function comparison test 
A comparison of the five loss functions—WIoU, CIoU, GIoU, SIoU, and EIoU—is shown in Table 3. 

For complex citrus features, GIoU only considers distance loss, resulting in a comprehensive decline in metrics 
such as precision and recall. EIoU separates the aspect ratio influence factors for separate calculation, slightly 
improving the model's average accuracy, with an average accuracy of 92.69%. SIoU considers multiple costs 
simultaneously and defines the width and height of the target box as consistency loss during loss calculation, 
improving the model's average accuracy by 1–2 percentage points. Based on comprehensive model performance 
evaluation metrics, this paper selects WIoU as the network loss function. 
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Table 3: Loss function comparison test 

Loss function Accuracy rate/% Recall rate/% Mean accuracy/% Model memory usage/MB 

CIoU 89.64 91.35 90.17 15.6 

GIoU 83.77 85.82 86.44 15.2 

SIoU 91.35 92.27 93.25 17.3 

EIoU 86.52 89.64 92.69 16.8 

DIoU 87.81 89.53 91.04 19.4 

WIoU 92.02 93.17 94.58 15.7 

 
IV. A. 3) Ablation test 
To further validate the optimization effects of each improvement method on the final algorithm, each was added to 
the model for ablation testing. 

The three improvement methods are modifying the WIoU loss function, the ECA attention mechanism, and the 
K-means+IoU distance. The testing method is as follows: each of the three improvement methods is added to the 
original YOLOv5 algorithm, and the effects are observed separately. All improvement modules are added, and the 
innovative algorithm is compared with the original YOLOv5. 

The results of the ablation experiments are compared as shown in Table 4. As can be seen from the table, 
compared to the YOLOv5 model before improvement, the three improvement methods each improved the overall 
network performance in different aspects. 

The improved K-means+IoU showed the most significant improvement in recall rate and average precision, with 
increases of 3.6 percentage points and 2.49 percentage points, respectively. 

In the improved network model after applying the three improvement strategies, the average precision in the test 
set increased from 88.54% to 95.81%, while precision and recall also improved by 5.87 percentage points and 7.26 
percentage points, respectively, indicating that the improved model exhibits good convergence. 

Table 4: The ablation test results were compared 

WIoU ECA K-means+IoU Accuracy rate/% Recall rate/% Mean accuracy/% 
Model 

memory usage/MB 

× × × 87.65 89.01 88.54 15.4 

√ × × 88.21 86.64 89.62 15.7 

× √ × 90.36 89.53 91.87 14.6 

× × √ 91.25 90.85 91.03 14.3 

√ √ × 90.03 91.63 90.85 15.2 

√ × √ 89.78 91.45 90.19 15.0 

× √ √ 92.36 95.32 94.23 14.8 

√ √ √ 93.52 96.27 95.81 14.1 

 
IV. B. Comparison of recognition results 
IV. B. 1) Analysis of experimental results 
The improved network model YOLOv5 was trained using iterative autonomous deep learning on the citrus image 
dataset established in this paper. After training, the recognition results of the improved YOLOv5 algorithm were 
tested to verify whether the optimized neural network model has advantages. 

The experimental results of the improved YOLOv5 network model for citrus image recognition are shown in Figure 
2. The results indicate that the mAP value (mean average precision) of the proposed recognition and detection 
method is 94.86%, the precision rate P is 93.49%, the recall rate R is 89.26%, and the F1 value is 0.88. 
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(a) Check rate - recall curve (b) Check curve 

  

(c) Recall curve (d) F1 curve 

Figure 2: Improved yolov5 network model for the identification of citrus images 

IV. B. 2) Comparison of experimental results 
To further test and improve the accuracy of YOLOv5's citrus image recognition results, a comparative analysis was 
conducted between the recognition results of YOLOv5 and those of the known image recognition network models 
SSD, YOLOv4, and YOLOv5 for the same citrus image. The recognition prediction results of each network model 
for the same citrus image are shown in Table 5. The experimental results, including mAP values, precision P, recall 
R, and F1 values, were compared among the four algorithms. 

The SSD model achieved an mAP value of 76.84%, a precision rate (P) of 94.21%, and a recall rate (R) of 70.63% 
for the citrus dataset in this study. The YOLOv5 model achieved an mAP value of 93.71%, a precision rate (P) of 
92.36%, and a recall rate (R) of 90.63% for the citrus dataset in this study. 

Based on the priorities set in this paper, the mAP value of the improved YOLOv5-based detection method 
proposed in this paper is the highest at 96.83%, which is 19.99% higher than SSD, 4.79% higher than YOLOv4, 
and 3.12% higher than YOLOv5. 

The computational results indicate that the improved YOLOv5 network model achieves the highest accuracy in 
citrus recognition. 

 



Research on citrus target recognition based on the improved YOLOv8 algorithm 

8265 

Table 5: The results of the model of the same citrus image recognition 

Model mAP/% Accuracy ratio/%(P) Recall rate/%(R) F1 value 

SSD 76.84 94.21 70.63 0.73 

YOLOv3 89.23 92.24 79.52 0.86 

YOLOv4 92.04 91.09 87.14 0.89 

YOLOv5 93.71 92.36 90.63 0.91 

Improved YOLOv5 96.83 94.67 95.76 0.93 

 
IV. C. Three-dimensional coordinate acquisition experiment 
The 3D coordinate acquisition experiment uses a Kinect V2 depth camera and a program written in the Python 
programming language. First, the camera is used to capture color images and depth images of the scene, and then 
these two types of images are fused. Then, the improved YOLOv5 model proposed in this paper is used to perform 
object detection on the fused images, yielding the bounding box information of the citrus objects in the images. The 
center point of this bounding box is calculated, representing the position of the citrus object's center point in the 
image. Subsequently, the transformation relationship between the pixel coordinate system and the camera 
coordinate system is calculated, and combined with the depth information stored in the fused images, the relative 
coordinates of the target fruit in the actual space with respect to the camera are determined. 

The localization experiment results are shown in Table 6. The table displays the calculated localization 
coordinates, actual coordinates, and the coordinate error between the two. 

The experimental results in the table indicate that the combination of the citrus recognition and spatial localization 
algorithms proposed in this paper achieves an average error of less than 2 mm between the calculated three-
dimensional coordinates of the fruit and the actual coordinates, which is sufficient to meet practical application 
requirements. 

Table 6: Location test results 

Serial number Location coordinates (X, Y, Z)/mm Actual coordinates X, Y, Z)/mm Coordinate error  , ,X Y Z   /mm 

1 (30.2,16.8,86.9) (29.7,15.9,87.3) 1.8 

2 (18.9,60.4,72.5) (19.4,60.6,72.1) 1.1 

3 (23.7,7.9,98.3) (24.4,8.2,97.7) 1.6 

4 (-8.9,15.8,114.4) (-8.3,15.4,113.8) 1.6 

5 (36.4,31.2,62.1) (36.7,31.5,62.5) 1.0 

6 (-81.2,104.5,426.9) (-81.3,103.8,427.1) 1.0 

7 (104.7,-103.4,454.3) (104.3,-103.2,454.1) 0.8 

8 (135.1,352.1,521.6) (134.7,351.3,521.2) 0.8 

9 (-87.3,312.4,324.8) (-87.1,312.2,324.6) 0.6 

10 (75.8,-67.3,121.3) (75.4,-67.1,120.9) 1.0 

 

V. Conclusion 
To address the issues of machine vision localization errors and poor citrus target recognition caused by overlapping 
or obstructed citrus fruits in natural environments, this paper proposes a citrus target recognition algorithm based 
on an improved YOLOv5 algorithm. By optimizing the prior boxes, the algorithm determines the more precise spatial 
coordinates of the target citrus fruits, thereby meeting the requirements for citrus target recognition. 

After adding the ECANet module, WIoU loss function, and K-means+IoU distance to the base YOLOv5 algorithm, 
the average accuracy of the experiments improved from 88.54% to 95.81%, with precision and recall rates 
increasing by 5.87% and 7.26%, respectively. This demonstrates that the improved YOLOv5 network model exhibits 
good convergence. Experiments using the improved YOLOv5 algorithm for citrus image recognition achieved an 
mAP value and precision rate P value both exceeding 92%, with a recall rate R value reaching 89.26%. Multiple 
localization experiments showed that the three-dimensional coordinate errors of citrus fruit picking points were all 
within 2 mm, demonstrating excellent localization performance. 

The YOLOv5 network model optimization designed in this paper can achieve automated recognition and spatial 
localization of citrus fruits in natural environments, meeting the visual system requirements for citrus picking robots 
to perform automated picking tasks, and can be further optimized for application. 
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