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Abstract A dynamic model with bend-torsion coupling was established for helical cylindrical gear split-torque 
transmission system of heavy load (above 10KNm), in which the time-varying mesh stiffness, random backlash, 
mesh error and bending deformation of shaft were considered. Express the bending stiffness, the torsional stiffness 
and the damping coefficients of the dynamic equation using dimension parameters, this model could provide more 
precise guidance for design work. Acquire the sharing coefficients and the dynamic coefficients, through solving the 
dynamic equation of system by the fourth-order Runge-Kutta method. The results show that reduction of the 
diameter of transmission shaft could effective improve the load sharing performance of system; Dynamic factor will 
fluctuate while the diameter of transmission shaft be smaller than a threshold value; Dynamic coefficients will be 
reduced while the moment of inertia of the bigger gear on transmission shaft is decreased properly. 

 
Index Terms helical cylindrical gear, dynamic model, sharing coefficients, dynamic coefficients, transmission 
system 

I. Introduction 
The helical gear split transmission system achieves torque splitting through a fixed-axis gear train. Compared to 
planetary gear transmission systems that achieve torque splitting through a floating sun gear, this system offers 
advantages such as fewer gears and bearings, lower manufacturing costs, and reduced noise. Historically, helical 
gear split transmission systems have been primarily applied in fields such as helicopters and ships. Due to its higher 
cost-effectiveness and easier maintenance, the helical gear split transmission system is increasingly being 
considered as a replacement for existing planetary gear transmission equipment in heavy industries such as mineral 
processing and steel manufacturing during production line equipment upgrades. Since the helical gear split 
transmission system lacks the floating structure found in planetary gear transmission systems, effectively 
addressing the load balancing issue at multiple meshing points becomes critical. 

Currently, domestic and international scholars have conducted in-depth research on the dynamic characteristics 
of cylindrical gear split transmission systems [1]-[16], including studies on the impact of axial lateral displacement 
on the system's load distribution performance [17]-[25]. However, when the shaft diameter is small, the shaft's 
bending stiffness is far greater than its torsional stiffness. In the vibration equations, the shaft's bending stiffness 
has a negligible effect on the system response. Therefore, in these studies, the shaft's torsional stiffness and the 
system's support stiffness (bearings and housing) are the focus of research, while the influence of the shaft's 
bending stiffness is ignored. In heavy-duty industrial equipment (10 kNm and above), the shaft diameter and bearing 
span are generally large, and the bending stiffness and torsional stiffness of the shaft approach the same order of 
magnitude. The inclusion of shaft bending stiffness enables the system's dynamic response to different shaft 
diameters to more accurately reflect the effects of various primary and secondary harmonics. In previous studies, a 
variable control approach was often adopted, neglecting the functional relationship between system damping and 
system stiffness. Additionally, while some studies considered the meshing clearance function, they overlooked the 
random nature of gear backlash within tolerance limits. This resulted in the backlash value in the clearance function 
being treated as a constant, typically selected as the average value of the backlash. 

This paper takes a heavy-duty gearbox system under large-scale heavy-duty grinding machine conditions as the 
research object, considering factors such as the lateral displacement of the shaft caused by shaft bending 
deformation and support deformation, the functional relationship between damping and corresponding stiffness, 
time-varying meshing stiffness, and the clearance function under random gear backlash. A system-level bending-
torsion coupled dynamic model was established; The study investigates the influence of the comprehensive stiffness 
of the transmission shaft (using diameter as an indicator), the load distribution coefficient, and the dynamic load 
coefficient on the system's split stage (first-stage meshing) and parallel stage (second-stage meshing). To provide 
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a theoretical basis for the design of helical gear split transmission systems, two concepts—engineering load 
distribution coefficient and engineering dynamic load coefficient—are defined as research objects. 

II. Principle of helical gear split transmission system 
II. A. Kinetic model 
The three-dimensional model of the helical gear split transmission system is shown in Figure 1:  
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Figure 1: Helical gear split transmission system 

The prime mover transmits torque simultaneously to gears 2 and 3 via gear 1 on the input shaft. The shaft 
connecting gears 2 and 4 is defined as drive shaft 1, and the shaft connecting gears 3 and 5 is defined as drive 
shaft 2. The final torque is transmitted to gear 6 on the output shaft via gears 4 and 5, driving the load connected to 
the output shaft.ZଵଵZଵଵZଵଵ 

 

Figure 2: Kinematic model of helical gear split transmission system 

The centralized mass method is used to construct the elastic dynamics model of the shunt flow system, as shown 
in Figure 2. Gear 1,2,3,4,5,6 is defined as Z1 ,Z2 ,Z3 ,Z4 ,Z5 , Z6, 𝑚୧ (i=1,2,3,4,5,6) are the masses of gear Z୧ , 𝑟୧ 
(i=1,2,3,4,5,6) are the radius of the base circle of gear Z୧, and 𝐽୧(i=1,2,3,4,5,6) are the moment of inertia of gear Z୧, 
𝑘ୗ୧ (i=1,2,3,4,5,6) is the shaft bending stiffness corresponding to gear Z୧ , 𝑐ୗ୧ (i=1,2,3,4,5,6) is the shaft bending 
damping coefficient corresponding to gear Z୧ , 𝜃୧ (i=1,2,3,4,5,6) is the torsional displacement of gear Z௜ , and 
𝑋୧(i=1,2,3,4,5,6) is the displacement of gear Z௜ along the tangent of the meshing pair, 𝑘୘୧(i=0,1,2,3) The torsional 
stiffness coefficients of the input shaft, the transmission shaft 1, the transmission shaft 2 and the output shaft are 
respectively, the 𝑘୴୧ଵ(i=1,2) is the time-varying meshing stiffness of Z1 and Z2 and Z3 respectively, the 𝑘୴୧ଶ(i=1,2) is 
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the time-varying meshing stiffness of Z6  and Z4  and Z5  respectively, and the 𝑐୴୧ଵ (i=1,2) is the meshing damping 
coefficient of Z1  and Z2  and Z3  respectively , 𝑐୴୧ଶ (i=1,2) is the meshing damping coefficient of Z6  and Z4  and Z5 , 
respectively. 𝐽଴, 𝜃଴ is the moment of inertia and torsional displacement of the prime mover; 𝐽଻, 𝜃଻ is the moment of 
inertia and torsional displacement of the load; 

The main dynamic parameters of the helical gear split transmission system are shown in Table 1. 

Table 1: Main kinetic parameters 

Member 
Number of teeth Helical angle Quality Moment of inertia Base radius 

 ° kg kg · mଶ m 

Prime mover    0.0012  

Gear 1 19 12 154.228 1.94889 0.14564 

Gear 2 168 12 11484.405 10806.27697 1.2877635 

Gear 3 168 12 11484.405 10806.27697 1.2877635 

Gear 4 17 8 901.191 27.51320 0.2255845 

Gear 5 17 8 901.191 27.51320 0.2255845 

Gear 6 91 8 24117.182 19704 1.19427 

Load    836576  

 
Gear Z2, Z3 with a bearing span of 0.4 m on both sides, Gears Z4 and Z5 have bearing spans of 0.8 m on both 

sides, the spans between Z2and Z4 and between Z3 and Z5 are both 1 m. 
 

II. B. Determination of basic parameters 
The meshing damping coefficients are 

 𝑐୴௜௝ = 2𝜁୴ට𝑘ത୴௜௝
௥ౡ

మ௥ౢమ௃ౡ௃ౢ

௥ౡ
మ௃ౡା௥ౢమ௃ౢ

 (1) 

In the above equation, 𝜁௩ is the meshing damping ratio, and experiments have shown [13] that its value ranges 
from 0.03 to 0.17. 𝑘ത௩௜௝ (i = 1, 2; j = 1, 2) is the average meshing stiffness of the meshing pair corresponding to the 
dynamic meshing force 𝐹୧୨  (i = 1, 2; j = 1, 2). In this project, 𝑘ത௩ଵଵ = 𝑘ത௩ଶଵ = 45 × 10଼ 𝑁/𝑚 , and 𝑘ത௩ଵଶ = 𝑘ത௩ଶଶ =

105.234 × 10଼ 𝑁/𝑚. 𝐽୩ and 𝐽୪ are the rotational inertias of the two meshing gears, and 𝑟୩ and 𝑟୪ are the base circle 
radii of the two meshing gears. 

The torsional damping coefficients of each shaft are 

 𝑐୘௜ = 2𝜁୘ට𝑘୘௜
௃೘௃೙

௃೘ା௃೙
  (2) 

In the above equation, 𝜁் is the torsional damping ratio of the material, and experiments have shown [13] that its 
value ranges from 0.005 to 0.075. 𝐽௠ and 𝐽௡ are the rotational inertias of the two gears on the axis corresponding to 
the i-th (i = 1, 2, 3, 4) torsional damping. The torsional stiffness can be expressed as 

 𝑘୘௜ =
ீగௗ೔

ర

ଷଶ௟ౘ౟
  (3) 

In the above equation, 𝐺  is the shear modulus of the material, 𝑑௜  is the equivalent diameter of the axis 
corresponding to 𝑘்௜, and 𝑙ୠ୧ is the distance between the two gears on the axis corresponding to 𝑘்௜. 

The bending damping coefficient of each axis is 

 𝑐ୗ௜ = 2𝜁ௌට𝑘ௌ௜
௃೘௃೙

௃೘ା௃೙
  (4)  

In the above equation, 𝜁ௌ is the bending damping ratio of the material, and experiments have shown [13] that its 
value ranges from 0.03 to 0.1. 𝐽௠ and 𝐽௡ are the rotational inertias of the two gears on the axis corresponding to the 
i-th bending damping. 

The bending stiffness of the shaft in this paper is defined as the ratio of the force (meshing force F) acting on the 
shaft at the gear installation position to the radial deformation w of the shaft at that position. A simplified diagram of 
the relationship between the radial deformation of the shaft and the meshing force is shown in Figure 3. 
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Figure 3: Relationship between radial deformation w of the shaft and meshing force F 

In Figure 3, A and B are the bearings on both sides of the gear, l is the span between bearings A and B, the 
distance between the gear and bearing A is a, and the distance between the gear and bearing B is b. w is the radial 
deformation of the shaft at the gear installation position. The deformation w can be obtained from formula (5): 

 𝑤 =
ி௔௕

଺ாூ௟
(𝑙ଶ − 𝑎ଶ − 𝑏ଶ)  (5) 

In the above equation, E is the elastic modulus of the material, and I is the moment of inertia of the cross 
section of the shaft relative to the neutral axis. 

According to formula (5), the bending stiffness formula of the shaft at the gear mounting location can be 
obtained: 

 𝑘ୗ௜ =
ி೔

௪೔
=

଺ாூ೔௟೔

௔೔௕೔(௟మି௔೔
మି௕೔

మ)
  (6) 

In the above equation, 𝐹௜ and 𝑤௜ represent the meshing force and radial deformation of the shaft at the gear 
installation position corresponding to the bending damping 𝑐ௌ௜ of the i-th gear, respectively. 𝑎௜, 𝑏௜, and 𝑙௜ are the 
dimensional parameters corresponding to 𝑐ୗ௜ in the tooth-shaft-bearing structure, and 𝐼௜ is the moment of inertia of 
the neutral axis of the shaft cross-section corresponding to 𝑐ୗ௜. 

All drive shafts in this paper are circular cross-section shafts, therefore 

 𝐼 =
గோర

ସ
=

గௗర

଺ସ
 (7) 

Expand the time-varying stiffness 𝑘(t) using a Fourier series. 

 𝑘(𝑡) = 𝑘ത௩ + α ∑ sin(𝑖𝜔𝑡 + 𝜑଴)
∞

௜ୀଵ
 (8) 

In the above equation, 𝑘ത௩  is the time-varying meshing stiffness homogeneity, α  is the stiffness fluctuation 
coefficient, 𝜔 is the meshing frequency (in this project, the first-order meshing frequency is 235.91667 Hz, and the 
second-order meshing frequency is 23.885 Hz), and 𝜑଴ is the initial phase. 

III. System vibration differential equations and solutions 
The differential equations of bending-torsion vibration of the system established according to the Newton-Euler 
method are as follows: 
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⎪
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⎪
⎪
⎧

𝐽଴𝜃଴̈ + 𝑐୘଴൫𝜃଴̇ − 𝜃ଵ̇൯ + 𝑘୘଴(𝜃଴ − 𝜃ଵ) = 𝑇ଵ

𝐽ଵ𝜃ଵ̈ − 𝑐୘଴൫𝜃଴̇ − 𝜃ଵ̇൯ − 𝑘୘଴(𝜃଴ − 𝜃ଵ)

+𝑟ଵ𝐹ଵଵ cos 𝛽ଵ + 𝑟ଵ𝐹ଶଵ cos 𝛽ଵ = 0

𝐽ଶ𝜃ଶ̈ + 𝑐୘ଵ൫𝜃ଶ̇ − 𝜃ସ̇൯ + 𝑘୘ଵ(𝜃ଶ − 𝜃ସ)

−𝑟ଶ𝐹ଵଵ cos 𝛽ଵ = 0

𝐽ଷ𝜃ଷ̈ + 𝑐୘ଶ൫𝜃ଷ̇ − 𝜃ହ̇൯ + 𝑘୘ଶ(𝜃ଷ − 𝜃ହ)

−𝑟ଷ𝐹ଶଵ cos 𝛽ଵ = 0

𝐽ସ𝜃ସ̈ − 𝑐୘ଵ൫𝜃ଶ̇ − 𝜃ସ̇൯ − 𝑘୘ଵ(𝜃ଶ − 𝜃ସ)

+𝑟ସ𝐹ଵଶ cos 𝛽ଶ = 0

𝐽ହ𝜃ହ̈ − 𝑐୘ଶ൫𝜃ଷ̇ − 𝜃ହ̇൯ − 𝑘୘ଶ(𝜃ଷ − 𝜃ହ)

+𝑟ହ𝐹ଶଶ cos 𝛽ଶ = 0

𝐽଺𝜃଺̈ + 𝑐୘ଷ൫𝜃଺̇ − 𝜃଻̇൯ + 𝑘୘ଷ(𝜃଺ − 𝜃଻)

−𝑟଺𝐹ଵଶ cos 𝛽ଶ − 𝑟଺𝐹ଶଶ cos 𝛽ଶ = 0

𝐽଻𝜃଻̈ − 𝑐୘ଷ൫𝜃଺̇ − 𝜃଻̇൯ − 𝑘୘ଷ(𝜃଺ − 𝜃଻) = −𝑇଴

𝑚ଵ𝑋ଵ̈ + 𝑐ௌଵ𝑋ଵ̇ + 𝑘ୗଵ

′
𝑋ଵ = 𝐹ଵଵ − 𝐹ଶଵ

𝑚ଶ𝑋ଶ̈ + 𝑐ௌଶ𝑋ଶ̇ + 𝑘ୗଶ

′
𝑋ଶ = 𝐹ଵଵ

𝑚ଷ𝑋ଷ̈ + 𝑐ௌଷ𝑋ଷ̇ + 𝑘ୗଷ

′
𝑋ଷ = 𝐹ଶଵ

𝑚ସ𝑋ସ̈ + 𝑐ௌସ𝑋ସ̇ + 𝑘ୗସ

′
𝑋ସ = 𝐹ଵଶ

𝑚ହ𝑋ହ̈ + 𝑐ௌହ𝑋ହ̇ + 𝑘ୗହ

′
𝑋ହ = 𝐹ଶଶ

𝑚଺𝑋଺̈ + 𝑐ௌ଺𝑋଺̇ + 𝑘ୗ଺

′
𝑋଺ = 𝐹ଶଶ − 𝐹ଵଶ

 (9) 

In the above equation, 𝐹ଵଵ and 𝐹ଶଵ are the dynamic meshing forces of the first-level meshing on branch 1 and 
branch 2, respectively, while 𝐹ଵଶ and 𝐹ଶଶ are the dynamic meshing forces of the second-level meshing on branch 1 
and branch 2, respectively. 𝑘ୗ୧

′
 is the equivalent stiffness of 𝑘ௌ௜ and the corresponding bearing stiffness, which can 

be expressed as 

 𝑘ୗ୧

′
=

௞౏೔×௞ి೔

௞౏೔ା௞ి೔
 (10) 

In the above equation, 𝑘஼௜ is the bearing support stiffness corresponding to 𝑘ௌ௜. 
Each meshing force can be expressed as 

 

⎩
⎪
⎨

⎪
⎧𝐹ଵଵ = 𝑐୴ଵଵ𝑌̇ଵଵ + 𝑘௩ଵଵ ∙ 𝑓ଵଵ(𝑌ଵଵ)

𝐹ଶଵ = 𝑐୴ଶଵ𝑌̇ଶଵ + 𝑘௩ଶଵ ∙ 𝑓ଶଵ(𝑌ଶଵ)

𝐹ଵଶ = 𝑐୴ଵଶ𝑌̇ଵଶ + 𝑘௩ଵଶ ∙ 𝑓ଵଶ(𝑌ଵଶ)

𝐹ଶଶ = 𝑐୴ଶଶ𝑌̇ଶଶ + 𝑘௩ଶଶ ∙ 𝑓ଶଶ(𝑌ଶଶ)

 (11) 

In the above equation, 𝑌௜௝ represents the relative displacement of the meshing line corresponding to the meshing 
force 𝐹௜௝. At the same time, in order to eliminate the rigid body displacement in the differential equation system (9) 
while maintaining the topological structure of the system unchanged, it is necessary to convert the torsional 
displacement of each axle wheel in the system into linear displacement. 𝑌௜௝ can be expressed as: 

 ൞

𝑌ଵଵ = (−𝑋ଵ + 𝑟ଵ𝜃ଵ) − (𝑟ଶ𝜃ଶ + 𝑋ଶ) − 𝑒ଵଵ

𝑌ଶଵ = (−𝑋ଵ + 𝑟ଵ𝜃ଵ) − (𝑟ଷ𝜃ଷ + 𝑋ଷ) − 𝑒ଶଵ

𝑌ଵଶ = (−𝑋ସ + 𝑟ସ𝜃ସ) − (𝑟଺𝜃଺ + 𝑋଺) − 𝑒ଵଶ

𝑌ଶଶ = (−𝑋ହ + 𝑟ହ𝜃ହ) − (𝑟଺𝜃଺ + 𝑋଺) − 𝑒ଶଶ

 (12) 

In equation (12), 𝑒௜௝ is the meshing error corresponding to 𝐹௜௝. 
In equation (11), 𝑓௜௝൫𝑌௜௝൯ is the clearance function of the gear meshing pair. Let the meshing clearance be 2𝑏௜௝, 

where 𝑏௜௝  is half of the tooth side clearance of the jth branch of the ith meshing stage. Then, 𝑓௜௝൫𝑌௜௝൯  can be 
expressed as: 

 𝑓୧୨൫𝑌୧୨൯ = ቐ

𝑌୧୨ − 𝑏௜௝     𝑌୧୨ > 𝑏௜௝

0        − 𝑏௜௝ ≤ 𝑌୧୨ ≤ 𝑏௜௝  

𝑌୧୨ + 𝑏௜௝     𝑌୧୨ < −𝑏௜௝

 (13) 

In this project, the gear machining accuracy is 5 grades, and for the first-level meshing of the system, 3192 
rational numbers are randomly selected according to the normal distribution between the 𝑏ଵଵ and the 𝑏ଵଶ between 
0.522 mm~0.851 mm respectively to generate a periodic piecewise function about time t. For the secondary 
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meshing of the system, 1530 rational numbers were randomly selected from the 𝑏ଵଶ and 𝑏ଶଶ according to the normal 
distribution between 0.523 mm~0.853 mm to generate a periodic piecewise function about time t. Take 𝑏ଵଵ(t) as an 
example, in the form of this 

 𝑏ଵଵ(𝑡) = ൞

0.513           0 ≤  𝑡 < 𝑡୦

…                  …
0.639          3191𝑡୦ ≤  𝑡 < 3192𝑡୦

𝑏ଵଵ(𝑡 − 𝑇)      𝑡 ≥ 3192𝑡୦

 (14) 

In equation (14), 𝑡୦ = 0042388 (s) is the duration of a single engagement, and 𝑇 = 3192𝑡୦ is a full engagement 
cycle. 

IV. Solving systems of differential equations of dynamics 
Using formulas (1), (2), (3), (4), and (6), along with knowledge of materials mechanics, transform the coefficients 
of the system of differential equations (9) into expressions in terms of d_i. Combine formulas (7), (10), (11), and 
(12) with the system of differential equations (9), and solve using the 4th-order Runge-Kutta method. The 
mathematical solution process is as follows: 

Since the system of equations (9) is a 14-variable second-order differential equation system, it cannot be directly 

solved using the Runge-Kutta method. Therefore, 𝑢୧ =
ௗ௬౟

ௗ௫
 is introduced to transform the system of equations (9) 

into a 28-variable first-order differential equation. 
For convenience of calculation, the unknown quantities are uniformly replaced, and only the matrix is changed as 

shown in formula (15): 

 

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

𝑦଴

𝑦ଵ

𝑦ଶ

𝑦ଷ

𝑦ସ

𝑦ହ

𝑦଺

𝑦଻

𝑦଼

𝑦ଽ

𝑦ଵ଴

𝑦ଵଵ

𝑦ଵଶ

𝑦ଵଷ⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

=

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
𝜃଴

𝜃ଵ

𝜃ଶ

𝜃ଷ

𝜃ସ

𝜃ହ

𝜃଺

𝜃଻

𝑋ଵ

𝑋ଶ

𝑋ଷ

𝑋ସ

𝑋ହ

𝑋଺⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 (15) 

Now, using formula (15) and the introduced unknown quantity u_i, equation (9) is transformed as follows: 
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⎪
⎧

𝐽଴𝑢̇଴ + 𝑐୘଴(𝑢଴ − 𝑢ଵ) + 𝑘୘଴(𝑦଴ − 𝑦ଵ) = 𝑇ଵ

𝐽ଵ𝑢̇ଵ − 𝑐୘଴(𝑢଴ − 𝑢ଵ) − 𝑘୘଴(𝑦଴ − 𝑦ଵ)

+𝑟ଵ𝐹ଵଵ cos 𝛽ଵ + 𝑟ଵ𝐹ଶଵ cos 𝛽ଵ = 0

𝐽ଶ𝑢̇ଶ + 𝑐୘ଵ(𝑢ଶ − 𝑢ସ) + 𝑘୘ଵ(𝑦ଶ − 𝑦ସ)

−𝑟ଶ𝐹ଵଵ cos 𝛽ଵ = 0

𝐽ଷ𝑢̇ଷ + 𝑐୘ଶ(𝑢ଷ − 𝑢ହ) + 𝑘୘ଶ(𝑦ଷ − 𝑦ହ)

−𝑟ଷ𝐹ଶଵ cos 𝛽ଵ = 0

𝐽ସ𝑢̇ସ − 𝑐୘ଵ(𝑢ଶ − 𝑢ସ) − 𝑘୘ଵ(𝑦ଶ − 𝑦ସ)

+𝑟ସ𝐹ଵଶ cos 𝛽ଶ = 0

𝐽ହ𝑢̇ହ − 𝑐୘ଶ(𝑢ଷ − 𝑢ହ) − 𝑘୘ଶ(𝑦ଷ − 𝑦ହ)

+𝑟ହ𝐹ଶଶ cos 𝛽ଶ = 0

𝐽଺𝑢̇଺ + 𝑐୘ଷ(𝑢଺ − 𝑢଻) + 𝑘୘ଷ(𝑦଺ − 𝑦଻)

−𝑟଺𝐹ଵଶ cos 𝛽ଶ − 𝑟଺𝐹ଶଶ cos 𝛽ଶ = 0

𝐽଻𝑢̇଻ − 𝑐୘ଷ(𝑢଺ − 𝑢଻) − 𝑘୘ଷ(𝑦଺ − 𝑦଻) = −𝑇଴

𝑚ଵ𝑢଼̇ + 𝑐ௌଵ𝑢଼ + 𝑘ୗଵ

′
𝑦଼ = 𝐹ଵଵ − 𝐹ଶଵ

𝑚ଶ𝑢̇ଽ + 𝑐ௌଶ𝑢ଽ + 𝑘ୗଶ

′
𝑦ଽ = 𝐹ଵଵ

𝑚ଷ𝑢̇ଵ଴ + 𝑐ௌଷ𝑢ଵ଴ + 𝑘ୗଷ

′
𝑦ଵ଴ = 𝐹ଶଵ

𝑚ସ𝑢̇ଵଵ + 𝑐ௌସ𝑢ଵଵ + 𝑘ୗସ

′
𝑦ଵଵ = 𝐹ଵଶ

𝑚ହ𝑢̇ଵଶ + 𝑐ௌହ𝑢ଵଶ + 𝑘ୗହ

′
𝑦ଵଶ = 𝐹ଶଶ

𝑚଺𝑢̇ଵଷ + 𝑐ௌ଺𝑢ଵଷ + 𝑘ୗ଺

′
𝑦ଵଷ = 𝐹ଶଶ − 𝐹ଵଶ

𝑢଴ = 𝑦̇଴

𝑢ଵ = 𝑦̇ଵ

𝑢ଶ = 𝑦̇ଶ

𝑢ଷ = 𝑦̇ଷ

𝑢ସ = 𝑦̇ସ

𝑢ହ = 𝑦̇ହ

𝑢଺ = 𝑦̇଺

𝑢଻ = 𝑦̇଻

𝑢଼ = 𝑋̇ଵ

𝑢ଽ = 𝑋̇ଶ

𝑢ଵ଴ = 𝑋̇ଷ

𝑢ଵଵ = 𝑋̇ସ

𝑢ଵଶ = 𝑋̇ହ

𝑢ଵଷ = 𝑋̇଺

 (16) 

Then, the 4th-order Runge-Kutta numerical integration is 

 ൜
𝑦୬ାଵ = 𝑦୬ + 𝜆଴(𝐾ଵ + 2𝐾ଶ + 3𝐾ଷ + 𝐾ସ)/6

𝑢୬ାଵ = 𝑦୬ + 𝜆଴(𝑞ଵ + 2𝑞ଶ + 3𝑞ଷ + 𝑞ସ)/6
 (17) 

In system of equations (17): 
𝐾ଵ = 𝑓(𝑥୬, 𝑦୬, 𝑢୬) 
𝐾ଶ = 𝑓(𝑥୬ + 𝜆଴/2, 𝑦୬ + 𝜆଴𝐾ଵ/2, 𝑢୬ + 𝜆଴𝑞ଵ/2) 
𝐾ଷ = 𝑓(𝑥୬ + 𝜆଴/2, 𝑦୬ + 𝜆଴𝐾ଶ/2, 𝑢୬ + 𝜆଴𝑞ଶ/2) 
𝐾ସ = 𝑓(𝑥୬ + 𝜆଴/2, 𝑦୬ + 𝜆଴𝐾ଷ/2, 𝑢୬ + 𝜆଴𝑞ଷ/2) 
𝑞ଵ = 𝑣(𝑥୬, 𝑦୬, 𝑢୬) 
𝑞ଶ = 𝑣(𝑥୬ + 𝜆଴/2, 𝑦୬ + 𝜆଴𝐾ଵ/2, 𝑢୬ + 𝜆଴𝑞ଵ/2) 
𝑞ଷ = 𝑣(𝑥୬ + 𝜆଴/2, 𝑦୬ + 𝜆଴𝐾ଶ/2, 𝑢୬ + 𝜆଴𝑞ଶ/2) 
𝑞ସ = 𝑣(𝑥୬ + 𝜆଴/2, 𝑦୬ + 𝜆଴𝐾ଷ/2, 𝑢୬ + 𝜆଴𝑞ଷ/2) 

In equation (16), 𝜆଴ is the integration step size selected for the calculation. When x = 𝑥଴, y= 𝑦଴, and 𝑢 = 𝑢଴, 
according to the above formula, the system of differential equations can be solved starting from (𝑥଴, 𝑦଴). 
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IV. A. Dynamic uniform load coefficient and engineering uniform load coefficient 
In equation set (9), the target unknown quantities are the torsional displacement and radial displacement of the 
gear. Since there are many unknown quantities to be solved, only some of the calculation results for a drive shaft 
diameter of 360 mm are shown here: radial displacement 𝑋ଷ is shown in Figure 4, radial displacement 𝑋ହ is shown 
in Figure 5, and rotational speed 𝜃ଶ̇ ̇ is shown in Figure 6. 
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Figure 4: Radial displacement 𝑋ଷ 
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Figure 5: Radial displacement 𝑋ହ 
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Figure 6: Rotational speed 𝜃ଶ̇ 
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In engineering problems, changes in meshing forces warrant further investigation. This requires substituting the 
solutions of the differential equation system into formula (10) to calculate the dynamic meshing forces 𝐹ଵଵ, 𝐹ଶଵ, 𝐹ଵଶ, 
and 𝐹ଶଶ. Taking the dynamic meshing forces at a shaft diameter of 200 mm as an example, the results are shown 
in Figures 7–10: 
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Figure 7: Engagement force 𝐹ଵଵ at 𝑑 = 200 𝑚𝑚 
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Figure 8: Engagement force 𝐹ଶଵ at 𝑑 = 200 𝑚𝑚 
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Finger force F12

 time t/s

F
in

ge
r 

fo
rc

e/
kN

 

Figure 9: Engagement force 𝐹ଵଶ at 𝑑 = 200 𝑚𝑚 
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Figure 10: Engagement force 𝐹ଶଶ at 𝑑 = 200 𝑚𝑚 

By comparing Figures 7 and 8 with Figures 9 and 10, it can be seen that the time required for secondary meshing 
to reach stability is much longer than that for primary meshing. 

The dynamic load distribution coefficient is defined as follows: 

 ൜
𝑔ଵ = 2 × (𝐹ଵଵ, 𝐹ଶଵ)௠௔௫/(𝐹ଵଵ + 𝐹ଶଵ)

𝑔ଶ = 2 × (𝐹ଵଶ, 𝐹ଶଶ)௠௔௫/(𝐹ଵଶ + 𝐹ଶଶ)
 (18) 

𝑔ଵ and 𝑔ଶ are the dynamic load distribution coefficients for the first-stage and second-stage meshing, respectively. 
These coefficients reflect the dynamic load distribution of different branches within the same meshing stage of the 
helical gear flow-sharing system. Below, we use the load distribution coefficients for the first and second stages of 
meshing when the shaft diameter 𝑑 = 200𝑚𝑚, 𝑑 = 250𝑚𝑚, and 𝑑 = 300𝑚𝑚 as examples. The changes in the load 
distribution coefficients over time are shown in Figures 11 to 16, respectively. 
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Figure 11: 𝑑 = 200 𝑚𝑚 First-stage meshing dynamic load distribution coefficient 
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Figure 12: 𝑑 = 250 𝑚𝑚 First-stage meshing dynamic load distribution coefficient 
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Figure 13: 𝑑 = 300 𝑚𝑚 First-stage meshing dynamic load distribution coefficient 
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Figure 14: 𝑑 = 200 𝑚𝑚 Second-stage meshing dynamic load distribution coefficient 
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Figure 15: 𝑑 = 250 𝑚𝑚 Second-stage meshing dynamic load distribution coefficient 
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Figure 16: 𝑑 = 300 𝑚𝑚 Second-stage meshing dynamic load distribution coefficient 

As shown in the figure, due to the fact that the tooth side clearance between Branch 1 and Branch 2 reaches its 
maximum difference at regular intervals, the corresponding dynamic load distribution coefficient also reaches its 
peak value. Although the average values of the dynamic load distribution coefficient vary little across different 
shaft diameters, the periodic peaks exhibit significant differences. For the design of transmission systems, these 
periodically occurring peaks hold greater practical engineering significance. 

The average value of the periodic peak of the dynamic load distribution coefficient is defined as the engineering 
load distribution coefficient. 𝑔ଵ୲ and 𝑔ଶ୲ are defined as the engineering load distribution coefficients for the first-stage 
meshing and second-stage meshing, respectively. 

 
IV. B. Dynamic live load coefficient and engineering live load coefficient 
The load distribution coefficient can only express the load distribution situation of shunting and parallel operation, 
but it cannot express the changes in dynamic forces. The dynamic load coefficient is defined as follows: 

 ൜
𝐺ଵ = (𝐹ଵଵ, 𝐹ଶଵ)௠௔௫/𝐹଴ଵ

𝐺ଶ = (𝐹ଵଶ, 𝐹ଶଶ)௠௔௫/𝐹଴ଶ
 (19) 

In the above equation, 𝐺ଵ  and 𝐺ଶ  represent the dynamic load coefficients for the first and second stages of 
meshing, respectively, while 𝐹଴ଵ and 𝐹଴ଶ represent the theoretical meshing forces for the first and second stages of 
meshing, respectively. Below, we take the dynamic load factors for the first and second stages of meshing as 
examples when the shaft diameter of the drive shaft is 𝑑 = 200𝑚𝑚, 𝑑 = 250𝑚𝑚, and 𝑑 = 300𝑚𝑚. The changes in 
the dynamic load factors over time are shown in Figures 17 to 22, respectively. 
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Figure 17: 𝑑 = 200 𝑚𝑚 First-stage meshing dynamic load factor 
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Figure 18: 𝑑 = 250 𝑚𝑚 First-stage meshing dynamic load factor 
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Figure 19: 𝑑 = 300 𝑚𝑚 First-stage meshing dynamic load factor 
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Figure 20: 𝑑 = 200 𝑚𝑚 Second-stage meshing dynamic load factor 
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Figure 21: 𝑑 = 250 𝑚𝑚 Second-stage meshing dynamic load factor 

As shown in Figures 20–22, when the shaft diameter of the drive shaft is small, the helical gear split transmission 
system takes longer to stabilize from startup. This is because the bending damping 𝑐ୗ௜ and torsional damping 𝑐୘௜ 
are directly proportional to their corresponding structural stiffness 𝑘ௌ௜ and 𝑘୘௜. As shown in equations (3) and (6), 
the structural stiffness 𝑘ௌ௜ and 𝑘୘௜ are directly proportional to the shaft diameter. 
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Figure 22: 𝑑 = 300 𝑚𝑚 Second-stage meshing dynamic load factor 

As shown in Figures 17 to 22, the dynamic dynamic load coefficient is similar to the dynamic average load 
coefficient in that the average values of the dynamic dynamic load coefficient do not vary significantly across 
different shaft diameters, but the periodic peak values exhibit significant differences. 

The average value of the periodic peaks of the dynamic dynamic load coefficient is defined as the engineering 
dynamic load coefficient. 𝐺ଵ୲  and 𝐺ଶ୲  are defined as the engineering dynamic load coefficients for the first and 
second stages of meshing, respectively. 
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IV. C. Effect of drive shaft diameter d on engineering load distribution coefficient 
Since the diameter d of the drive shaft simultaneously affects both the bending stiffness and torsional stiffness of 
the shaft, it is more practical to study the relationship between the shaft diameter d and the engineering load 
distribution coefficients 𝑔ଵ୲ and 𝑔ଶ୲ using d as the variable. The shaft diameter is selected within the range of 130 
mm to 400 mm. Each simulation lasts 30 seconds. The data is read from the point when the system stabilizes (8 
seconds for shaft diameters less than 200 mm, and 5 seconds for others) until the end of the simulation. The 𝑔ଵ୲ 
and 𝑔ଶ୲ values for each simulation are recorded, and the 𝑔ଵ୲/𝑔ଶ୲-d relationship curve is plotted as shown in Figure 
23. 
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Figure 23: Effect of shaft diameter d on engineering uniform load coefficients 𝑔ଵ୲ and 𝑔ଶ୲ 

As shown in Figure 23, in this project, the relationship between the two-stage load distribution coefficient and the 
shaft diameter can be fitted into a fourth-order polynomial, with a goodness-of-fit 𝑅ଶ ≥ 0.998 . When the shaft 
diameter d< 150 mm, the load distribution coefficient changes slowly. It can be seen that within a certain range, 
reducing the shaft diameter d can effectively improve the load distribution coefficient. 

 
IV. D. Effect of drive shaft diameter d on engineering dynamic load coefficient 
Taking the engineering dynamic load coefficients 𝐺ଵ୲ and 𝐺ଶ୲ as the observation objects, this study investigates the 
relationship between the shaft diameter d and the engineering dynamic load coefficients. The simulation grouping, 
duration, and data reading methods are the same as those in Section 3.3. The 𝐺ଵ୲/𝐺ଶ୲-d relationship curve is shown 
in Figure 24. 
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Figure 24: Effect of shaft diameter d on engineering dynamic load coefficients 𝐺ଵ୲ and 𝐺ଶ୲ 

As shown in Figure 24, when the shaft diameter d is less than 280 mm, the trend of the engineering dynamic load 
coefficient exhibits significant fluctuations. At this point, further reducing the shaft diameter will not improve the 
meshing condition. This is due to the combined effects of the primary and secondary resonances of the shaft's 
bending-torsion behavior. 

To investigate the influence of the bending stiffness and torsional stiffness of the drive shaft on the fluctuations in 
the engineering dynamic load coefficient, a bending-torsion model is established that only considers the deformation 
of the shaft support. The model is established in the same manner as described earlier, but the influence of the 
shaft bending stiffness is excluded. The relationship between the shaft diameter d and the dynamic load coefficient 
is shown in Figure 25. 
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Figure 25: Bending-torsion model 𝐺ଵ୲/𝐺ଶ୲-d without considering shaft bending deformation 

As shown in Figure 25, when the bending deformation of the drive shaft is not considered, the peak value of the 
curve 𝐺ଶ୲-d and its corresponding diameter are slightly different from those when the bending deformation of the 
drive shaft is considered, but the overall trend is similar; while the curve 𝐺ଵ୲-d becomes smoother than when the 
bending deformation of the drive shaft is considered. It can be seen that the bending deformation of the drive shaft 
has a greater impact on the engineering dynamic load coefficient 𝐺ଵ୲ of the first-stage meshing. 

 
IV. E. Effect of rotational inertia on engineering dynamic load coefficient 
By comparing Figures 24 and 25, it can be seen that the primary cause of fluctuations in the trend diagram of the 
engineering dynamic load coefficient 𝐺ଶ୲-d is torsional vibration. Since the force conditions of gears Z2 and Z3 are 
better than those of other gears, and their larger diameters allow for a significant change in their rotational inertia 
by removing a small amount of mass without significantly affecting their strength. Next, we consider altering the 
rotational inertia 𝐽ଶ  of gears Z2  and Z3  by machining concentric circular grooves on their end faces, thereby 
modifying the natural frequency of the torsional system. The 𝐺ଶ୲-d trend under different 𝐽ଶ values is shown in Figure 
26. 
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Figure 26: 𝐺ଶ୲-d trend diagram under different 𝐽ଶ conditions 

As shown in Figure 26, as 𝐽ଶ decreases, the 𝐺ଶ-d trend line gradually shifts to the left, and the amplitude of the 
peaks gradually decreases. In this project, due to the root circle constraints of Z4 and Z5 the shaft diameter of the 
drive shaft is approximately 285 mm. Appropriately reducing 𝐽ଶ can effectively improve the dynamic load coefficient 
𝐺ଶ: in this project, reducing 𝐽ଶ by 6% is sufficient to control the dynamic load coefficient 𝐺ଶ within 1.05. 

Using the same method, the 𝐺ଵ୲-d trend under different 𝐽ଶ values is shown in Figure 27. 
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Figure 27: 𝐺ଵ୲-d trend diagram under different 𝐽ଶ conditions 

As can be seen from Figure 27, changing 𝐽ଶ has little effect on the engineering dynamic load coefficient of the 
first-stage meshing, and when 𝐽ଶ is significantly reduced, there is a tendency for the peak value to shift to the 
right. Therefore, considering only the first-stage meshing, it is not advisable to reduce 𝐽ଶ too much. 

V. Conclusion 
(1) By establishing the nonlinear vibration differential equation system for the split-drive transmission system, which 
incorporates the functions of shaft bending deformation, bearing deformation, shaft torsional deformation, damping, 
and corresponding stiffness, we have modeled the system's dynamic response. Comparing Figures 25 and 26, it is 
evident that under heavy-load conditions (where the drive shaft diameter is larger), the vibration differential equation 
system that accounts for shaft bending deformation more accurately reflects the system's dynamic response. 

(2) Within a certain range, reducing the shaft diameter d can effectively improve the engineering load distribution 
coefficient. The 𝑔୧୲-d (i=1,2) curve can be fitted into a fourth-order polynomial. Therefore, when the shaft diameter 
d is less than a certain threshold, further reducing the shaft diameter d has a negligible effect on improving the 
engineering load distribution coefficient. Considering that the stress limits of components in engineering practice 
are more critical than the system's load distribution, it is not advisable to indiscriminately reduce the shaft diameter 
d solely to improve the system's load distribution. 

(3) When the drive shaft diameter d is below a certain threshold, the engineering dynamic load coefficient exhibits 
significant fluctuations. When design parameters are far above this threshold, reducing the shaft diameter d can 
effectively improve the dynamic load state. However, once the design parameters approach or fall below this 
threshold, reducing the shaft diameter d becomes meaningless. 

(4) Within this range, appropriately reducing the rotational inertia of the larger gear on the drive shaft can 
effectively lower the system's engineering dynamic load coefficient. This is primarily because, in this system, due to 
the large single-stage transmission ratio, the diameter of the larger gear on the drive shaft is much larger than the 
shaft diameter, resulting in a lower torsional natural frequency. When the shaft diameter d remains unchanged, 
reducing the rotational inertia of this gear can effectively alter the system's natural frequency. 

(5) Since reducing the rotational inertia of the larger gear on the drive shaft shifts the 𝐺୧-d curve to the left overall, 
the rotational inertia of this gear should not be reduced excessively. In this project, a 6% reduction is sufficient to 
effectively improve the system's dynamic load coefficient. 
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