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Abstract Electricity user behavior data is complex and diverse, resulting in significant variability and uncertainty in 
user behavior data, which increases the difficulty of monitoring electricity user behavior and leads to low monitoring 
rates. This paper utilizes the singular value equivalent matrix to obtain a non-Hermitian matrix and performs 
standardization processing on the aforementioned matrix. Considering the ARMA equation system for time series 
stationarity, the proposed numerical solution is used to calculate the expression, thereby extending RMT from a 
purely Gaussian environment to a non-Gaussian environment. An ETD-SAC electricity theft detection model 
framework is constructed to determine whether users are engaging in electricity theft during the detection period. 
Through user electricity consumption behavior detection, it was found that the electricity load trend of electricity 
theft users fluctuated between [8.54, 38.54] kWh after July 15, 2023. One of the suspected users detected 
bypassed the meter for electricity theft, with the meter current ranging from -0.1 to 0.4 A, while the actual incoming 
current was 0.6 to 1 A, constituting electricity theft behavior. Using the same method for electricity theft behavior 
analysis, CZ Factory was found to have engaged in electricity theft on October 1, 2023, requiring the recovery of 
1,354 units of electricity and 1,126.528 yuan in electricity fees. The anti-electricity theft application model based on 
ARMA achieved good results.   
 
Index Terms non-Hermitian matrix, ARMA model, ETD-SAC electricity theft detection model, electricity theft 
behavior analysis 

I. Introduction 
Electricity, as a critical strategic resource for economic development, plays an indispensable role in societal 
progress. However, in recent years, energy shortages have become increasingly frequent. As the unit cost of 
electricity has risen, electricity theft by users has intensified, disrupting the normal order of the electricity market 
economy and creating a significant economic black hole, resulting in substantial economic losses for the nation 
and electricity-related enterprises [1]-[3]. Additionally, electricity theft poses significant social hazards. Accidents 
caused by transformer and line failures due to electricity theft, resulting in power outages of varying scales, occur 
frequently, disrupting power supply and even leading to civil disputes, public order issues, fires, and criminal cases, 
thereby affecting social stability [4]-[6]. Currently, electricity theft by users is primarily detected through regular 
inspections and analysis of electricity consumption reports. This places high demands on the meticulousness and 
professionalism of power company staff, as well as requiring them to have extensive practical experience [7]-[9]. 
Additionally, this monitoring method relies heavily on periodic inspections of the power system, resulting in some 
waste of manpower and low monitoring efficiency [10]. With the development of smart meters and electricity meter 
data collection technology, the power industry has entered the digital age. Electricity consumption data from power 
users is now fully accessible and utilized, leading to progress in electricity consumption behavior monitoring and 
anti-theft efforts, thereby reducing instances of electricity theft [11]-[13]. 

Against the backdrop of rapidly increasing electricity consumption data, traditional electricity consumption 
behavior monitoring has exposed its shortcomings, such as rising false alarm rates and difficulty in detecting new 
forms of electricity theft, thereby increasing the challenges for anti-theft efforts [14], [15]. Time series analysis 
models are a method of modeling and analyzing time series data, playing a crucial role in analyzing data with 
temporal characteristics. They aim to reveal trends, seasonality, cycles, and irregular fluctuations in data, enabling 
prediction and decision-making. These models are widely applied in fields such as economics, finance, markets, 
meteorology, and medicine [16]-[18]. Electricity data exhibits distinct temporal characteristics such as multiple 
periodicity, nonlinear fluctuations, and spatial correlation. By applying intelligent algorithms based on time series 
analysis models to monitor user electricity consumption behavior, analyzing the collected electricity consumption 
information can identify electricity theft targets and better protect the interests of power supply companies 
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[19]-[21]. 
In studies related to electricity consumption and theft, relevant time series analysis models are primarily used for 

electricity consumption prediction and electricity theft detection. Literature [22] points out that time series 
econometric models and machine learning can effectively extract statistical features of power consumption, with 
the autoregressive partial differenced moving average model yielding better results in estimating power 
consumption. Literature [23] compared the long short-term memory (LSTM) model and the seasonal 
autoregressive integrated moving average (SARIMA) model in predicting power consumption, with the LSTM 
model achieving a lower error rate. Literature [24] uses power consumption data sensed by different sensors at the 
terminal unit and the user terminal unit as the basis, employing an autoregressive model for feature extraction, 
analysis, and prediction to identify meter-bypassing power theft behavior. However, when the sensor data received 
at the user terminal unit is 0, the coefficients of the autoregressive model exhibit discrepancies. Literature [25] 
utilized LSTM and fuzzy inference systems to detect and confirm power consumption data from different types of 
users, thereby accurately identifying power theft behavior. Literature [26] integrated the Shaoxing swarm algorithm, 
gated convolutional autoencoder, cost-sensitive learning, and LSTM to construct a power theft detection model, 
which achieved a power theft detection accuracy rate of 99.45% under real-time power consumption data. In 
Reference [27], electricity consumption data balancing, feature extraction, and electricity theft classification were 
performed using electricity theft attacks, LSTM, and gated recurrent units (GRU), respectively, to create an 
electricity theft detection strategy. Reference [28] proposed an electricity theft detection model based on 
bidirectional gated recurrent units (GRU) and bidirectional LSTM, using K-means minority class oversampling 
technology to address the electricity data imbalance issue, combined with random feature engineering for 
preprocessing, to improve the classification accuracy of whether users engage in electricity theft. Reference [29] 
established an anti-electricity theft diagnosis method dominated by the Long Short-Term Memory (LSTM) network 
model. LSTM is primarily used to screen the features of users identified by electricity theft detection devices as 
engaging in electricity theft or abnormal electricity consumption behavior, and the results are reported to the main 
station. 

This paper selects multiple nodes as samples of user electricity consumption, performs discrimination 
processing based on the status of each node, standardizes the original matrix, and forms a non-Hermitian matrix. 
Using the singular value equivalent matrix, the non-Hermitian matrix is solved to obtain the matrix standardization 
results. RMT is extended from a purely Gaussian environment to a non-Gaussian environment. Considering the 
global characteristics of the electricity theft detection algorithm, we identified features with high computational 
complexity and critical importance. We proposed a time series stationary ARMA model and performed data 
preprocessing, sequence decomposition, sequence embedding, feature extraction, and classifier classification 
operations to determine whether users engaged in electricity theft during the detection period. We designed 
simulation experiments to detect user electricity load behavior and conducted anti-theft application tests using the 
ARMA-based user electricity feature extraction algorithm. 

II. Detection of electricity consumption behavior based on the ARMA time series model 
II. A. Data processing 
II. A. 1) Acquisition of raw data 
Select the electricity consumption of n  nodes as samples, and select k  state variables for each node for 
discrimination, resulting in a total of N n k   variables. For each sampling time it , the collected data can be 
organized into a column vector: 

  T1 2( ) ( ), ( ), , ( )i i i N ix t x t x t x t   (1) 

Due to the continuous expansion of the sampling time, the N  column vectors are expressed in matrix form, and 
the sliding time window method is selected to collect samples. The window width is set to T , that is, the historical 
data collected is used to collect the power data at time i , which together form a random matrix and serve as the 
data source for analysis: 

  1( ), , ( )N T i T iX x t x t     (2) 

For any N T  original matrix X̂ , perform normalization processing: 
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In the formula: 1 2ˆ ˆ ˆ ˆ( , , , )i Tx x x x  , ˆ( )ix  is the standard deviation of ˆix , ix  is the mean of ˆix , ( )ix   is the 

standard deviation of ix  and ( ) 1ix  , ix  is the mean of ix  and 0,1 ,1ix i N j T     . 

The matrix obtained through the above processing becomes an N T  non-Hermitian matrix N Tx C  .  
 

II. A. 2) Solving the singular value equivalent matrix 
For non-Hermitian matrices, the singular value equivalent matrix of X  can be obtained from the following formula: 

 *
uX XX U    (4) 

In the formula: U  is a unitary matrix that conforms to the Haar distribution.  
Then we can see that: 

 * *
u uX X XX    (5) 

When there are L  matrices ˆ ( 1, 2, , )iX i L  , perform random matrix analysis on them to obtain L  processed 

independent non-Hermitian matrices, where: 

 ,
1

L
n n

u i
i

z X C 



   (6) 

II. A. 3) Matrix Standardization 
The above matrix needs to be standardized to obtain the matrix z : 

 / ( ( ))i i iz z N z  (7) 

In the formula: 1 2( , , , )i i i iNz z z z   , 1 2( , , , )i i i iNz z z z    , and ( )iz  is the standard deviation of the matrix iz . 

 
II. A. 4) Limit spectral distribution of ARMA models for time series 
First, consider the stationary ARMA( ,p q ) equation for time series [30]: 

 ( ) ( )t tB y B    (8) 

In the equation: { : 0, 1,...}ty t    is a sequence of real variables, { : 0, 1,...}t t    is a white noise vector 

obeying 2(0, )N   , and B  is a delay operator. 

Let iX  be N  independent copies of 1 2( , ,..., )Ty y y y : 

 1 2( , , , ), [1, ]i i i TiX X X X i N   (9) 

 1 2( , , , )TNX X X X   (10) 

If / (0,1]c N T  , then the empirical spectrum corresponding to the covariance matrix 1/ ( )HS N XX  tends 

toward the Stieltjes transform probability distribution F : 
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In the formula: 
1

( ) ( ),Fs z F dx z C
x z

 
 , ( )f   is the spectral density of the ARMA( ,p q ) model: 
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For more complex situations, a numerical solution is proposed to calculate the expression of F  as follows: 
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In the equation: 
2
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Let   be a sufficiently small positive value, and set z x i  . Choose the initial value 0 ( )s z u i  . Iterate 

according to the iterative equation 0k  : 

 1
1( ) { ( ( ))}k ks z z A s z 
     (14) 

Until ( )ks z  converges, then the density function ( )Tf x : 

 
1

( ) ( )T kf x Is z


  (15) 

Through the above processing, RMT is extended from a purely Gaussian environment to a non-Gaussian 
environment. 

 
II. B. Electricity theft detection model 
II. B. 1) Model Framework 
Figure 1 shows the ETD-SAC electricity theft detection model framework. Addressing the issues of high 
computational complexity in global feature extraction and the tendency for key features to be obscured by complex 
redundant global features in existing electricity theft detection algorithms, this chapter proposes an electricity theft 
detection model based on a sequence-level connection autocorrelation mechanism [31]. One of the advantages of 
the ETD-SAC model is its ability to simultaneously capture seasonal features with similar sub-sequences in power 
data, trend-based features after sequence decomposition, and local similarity features in power data. 
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Figure 1: Framework of ETD-SAC electricity Theft Detection Model 
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II. B. 2) Data preprocessing 
(1) Missing value handling 

User electricity consumption data often contains missing values. This is mainly caused by various factors, such 
as smart meter malfunctions, unreliable transmission of measurement data, unscheduled system maintenance, 
and storage issues. Therefore, in this chapter, we use linear interpolation methods to fill in missing values based on 
the following equation: 

 

1 1
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 


 (16) 

where iq  represents the value of the power data at a certain time. If the value is an empty character or a 
non-numeric character, it is represented as NaN . When the power data at a certain time is an empty character, 
the average value of the adjacent time is used to update the current time's power consumption value. If the value of 
the adjacent time is also NaN , the current time's power consumption value is represented as 0. 

This chapter restores outliers based on the “three sigma rule” using the following equation:   

 
( ) 3 ( )  ( ) 3 ( )i

i

avg q std q if q avg q std q

q otherwise

    



 (17) 

In this context, ( )avg q  represents the average value of the sequence q , while ( )std q  denotes the standard 
deviation of the sequence q . This method effectively reduces outliers in the data. 

(3) Data normalization 
Before training the model, the sample data needs to be normalized. After interpolating the data and removing 

outliers, the MAX-MN normalization method is selected. For each training sample , ,k T TX q , normalization is 

performed according to the following equation: 

 
min( )

( )
max( ) min( )

i k
i
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q X
f q

X X





 (18) 

where min( )kX  denotes the minimum value of the sample sequence kX , max( )kX  denotes the maximum value 

of the sample sequence kX , and [ : ]s ci T T . 

 
II. B. 3) Sequence decomposition 
This paper uses the average pooling process ( )AvgPool   with the same padding strategy to implement sliding 
average, from which the trend features after sequence decomposition are obtained. Then, the power data is 
subtracted from the trend features to obtain the periodic features. The specific formula is as follows: 

 ( ( ))tX AvgPool Padding X  (19) 

 s tX X X   (20) 

Among these, L dX R   is the input data of historical electricity consumption samples of length L , L d
sX R   

is the seasonal feature obtained from sequence decomposition, and L d
tX R   is the trend feature obtained from 

sequence decomposition. The convolution kernel size in the pooling layer is 25, and the stride is 1. 
 
II. B. 4) Sequence Embedding 
For complex time series feature extraction, low-dimensional data needs to be elevated to amplify features. In order 

to output seasonal features L d
sX R   to the defined modeld  dimension and convert them into encoded vectors, 

the model uses convolutional layers to embed features. Specifically, this is achieved using one-dimensional 
convolutional layers: 

 *conv conv s convX W X B   (21) 
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where m dilL d
convX R  , ,conv convW B  are the output, convolution kernel parameters, convolution layer input, and 

bias term of the convolution layer, respectively. In the convolution operation, the convolution kernel size is 3×3, and 
the stride is 1. To prevent gradient vanishing during training, the ReLU linear function is used. Additionally, the 
“same padding strategy” is applied. 

In order to enable the model to fully utilize the sequential information of electricity data, the ETD-SAC model adds 
time-location encoding to the embedding layer. There are several options for location embedding. Referring to the 
transformer, sine and cosine functions of different frequencies are used: 

 2 /
( ,2 ) sin( /10000 )modoli d
pos iPE pos  (22) 

 2 /
( ,2 1) cos( /10000 )modoli d
pos iPE pos   (23) 

In this context, pos  represents the position in the time series, i  denotes the length of the sine and cosine 

functions, and modeld  refers to the dimension of the position encoding. The choice of sine and cosine functions to 

represent position encoding stems from the fact that the temporal characteristics of power data exhibit periodicity 
similar to that of sine and cosine functions. This makes it convenient to use sine and cosine functions to represent 
relative positions within power data. Additionally, the sine function allows for variable lengths of the input sequence. 
Both sine and cosine functions are used because only when both are used together can pos kPE   be represented 

as a linear function of posPE . This allows each point in the position encoding sequence to be represented by a 

point in the sine function, achieving the position embedding effect. 
The sequence embedding layer then adds the output of the one-dimensional convolution to the output of the 

position embedding: 

 ous convX X PE   (24) 

II. B. 5) Feature extraction 
Assume there are Layer sequence-level autocorrelation mechanism layers. The overall equation for the l th 

sequence-level autocorrelation mechanism layer can be summarized as 1( )l l
autocor autocorX SeriesAutoCorrelation X  . 

The formula is as follows: 

 1 1, ( ( ) )l l l l
autocor autocor autocor autocorS SeriesDecomp Auto Correlation X X      (25) 

Among these, , {1, , }l l
autocor autocorX S l L    denotes the output of the l th sequence-level autocorrelation 

mechanism layer, and autocorX  denotes the embedding of emsX , which is used to extract periodic features. 
l
autocorS  denotes the seasonal features decomposed by the sequence decomposition module in the l th layer. 
l
autocor  denotes the trend features decomposed by the sequence decomposition module in the l th layer. 

Additionally, a residual network is applied in each autocorrelation mechanism to mitigate network degradation 
issues. 

As shown in the autocorrelation mechanism flow in Figure 2, under the single-head autocorrelation mechanism, 
for a seasonal embedding sequence emsX  with a time length of L  that has undergone feature embedding. First, 

the embedded sequence emsX  is mapped to three vectors  query Q ,  key K  and  value V . Then, the similarity 

between the delayed sequences of  query Q  and  key K  is calculated, and the Topk  positions with the highest 

similarity as the time delay starting points. Time delay operations are then performed on  value V  at the Topk  

starting points to obtain a new time delay sequence. The similarity values are then weighted and summed with the 
time-delayed  value V  to obtain the output vector of the autocorrelation mechanism. This allows the attention 
mechanism to be replaced by the following formula. The specific autocorrelation mechanism formula is: 

 1 ,[1, , ], , ( ( ))argTovk
k Q K kL R      (26) 

 , 1 , , 1 ,
ˆ ˆ( ), , ( ) ( ( ), , ( ))Q K Q K k Q K Q K kR R SoftMax R R      (27) 

 ,
1

ˆ( , , ) ( , ) ( )
k

i Q K i
i

Auto Correlation Q K V Roll V R 


   (28) 
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Among them,   represents the starting point of time delay. ( )argTopk   is used to obtain the starting points of 

similar subsequences in the time series  query Q  and the time series  key K  to obtain Topk  time series, and let 

[ log ]k c L  , where c  is a hyperparameter. ,Q KR  is the autocorrelation between the sequence  query Q  and 

the sequence  key K . ( , )Roll X   denotes the sequence rollback operation on  value V  starting from the time 

delay  . During sequence rollback, elements beyond the first position are reintroduced into the last position to 
construct a time-delayed sequence with similar seasonal characteristics to the original time series within the cycle. 

   

Linear layer

Connect

Time-delay aggregation

Inverter conversion

FFT FFT

Q K V

Topk

 

Figure 2: Autocorrelation mechanism 

Analysis of user electricity data reveals that electricity data exhibits daily periodicity, with similar sub-sequences 
occurring between phases of the same period. For a power data set tX  with seasonal similarity, the correlation 

( )xxR   between different delay sequences within the sequence can be calculated using the following equation: 

 
1

1
( ) lim

L

xx t t
L

t

R x x
L  




   (29) 

( )R   reflects the time-delay similarity between the sequence tX  and its delayed sequence tX   starting at 

time  . 
 

II. B. 6) Classifier 
After feature extraction in the previous stage, model validation is performed in this stage. Specifically, the features 
extracted in the previous subsection are used as input, and a binary classification neural network layer is used to 
calculate the degree of abnormality in the electricity consumption curve. The binary classification neural network 
layer consists of two consecutive 1D-CNN layers, with the formula as follows: 

 2 1 1 2( ( ) )outY W WY b b    (30) 

1 2,W W  are the learnable parameters of the one-dimensional convolution layer, 1 2,b b  are the bias terms of the 
one-dimensional convolution layer, and ( )   is the sigmoid activation function. The final output of the binary 
classification neural network layer is a single neuron, meaning that the values of the elements in outY  are output to 
the interval (0, 1) via the sigmoid activation function, containing only a single element value. Then, the output value 

outY  is compared with the set threshold for the degree of abnormality in the electricity consumption curve to 
determine whether the user engaged in electricity theft during the detection period. 
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III. Electricity usage behavior detection and anti-electricity theft application analysis 
III. A. Detection and analysis of user electricity consumption behavior 
III. A. 1) User electricity load 
Trend indicators are used to reflect fluctuations in users' electricity consumption data. For this purpose, this paper 
randomly selected one honest user and one electricity thief, and plotted their continuous 10-month electricity 
consumption trends as shown in Figure 3 below. 

It can be observed that the electricity load of users forms a continuous time series with significant fluctuations. 
The electricity load trends of honest and electricity-stealing users are inconsistent. The electricity load trend of 
honest users fluctuates between 4.38 kW•h and h to 49.28 Kw•h, while the electricity consumption trend of 
electricity-stealing users fluctuated between [8.54, 38.54] Kw•h. That is, the volatility of electricity consumption 
patterns may differ between different types of users. To better capture the volatility patterns of load time series, this 
paper employs a sliding window method to extract trend-related feature indicators from the load time series of 
different user types. The implementation is carried out using the Python software platform.   

 

Figure 3: General trend diagram of user's electricity load 

III. A. 2) Distribution of electricity load characteristic dimension data 
Data standardization (normalization) processing is a foundational task in data analysis. To eliminate the influence 
of different units of measurement among features, data must first undergo standardization processing. Data 
standardization involves scaling the data proportionally to fit it into a smaller, specific range, thereby transforming it 
into dimensionless numerical data. After processing, data from different units and scales can be compared and 
evaluated comprehensively. Figure 4 shows the distribution of two-dimensional feature data. It can be seen that 
the actual user electricity consumption feature 1 is distributed in the range [-3.05, 14.12], and feature 2 is 
distributed in the range [-3.64, 7.47]. 

 

Figure 4: Two dimensional eigendata distribution 
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III. A. 3) User Behavior Detection Results 
Figure 5 shows the accuracy of the user anomaly detection model. The classification accuracy of the user behavior 
gray list generated by the ARMA model at different detection rates is compared with the classification accuracy of 
the gray list generated by the unsupervised detection model at different detection rates. The horizontal axis 
represents the detection rate, i.e., the number of gray list users detected, while the vertical axis represents the 
accuracy of the detection results. 

In the experiments, the trends of the curves were largely similar across the three different datasets. As shown in 
the figure, the ARMA model consistently outperformed the unsupervised detection model throughout the entire 
detection rate improvement process. In other words, under the same detection rate, the detection model based on 
the ARMA model achieved higher accuracy throughout the detection process compared to the detection model 
based solely on unsupervised learning. The accuracy of the ARMA-based detection model reaches its peak at a 
detection rate of approximately 30%-40%, achieving an accuracy rate of 84.85%. Such a high accuracy rate holds 
significant value for on-site detection. 

 

Figure 5: User anomaly detection model accuracy 

III. B. Detection of electricity theft 
III. B. 1) Model Results 
The model was selected for validation testing in a certain county in CZ. Analysis was conducted on certain 
characteristics of some suspicious users. Based on the output results, a ranking of suspicion levels was 
established. Users with higher suspicion levels were selected, and their electricity consumption data was plotted in 
a graph. Figure 6 shows the correlation between user transformer district line loss and daily electricity consumption. 
Figure (a) represents User 1, and Figure (b) represents User 2. 

In May 2023, the suspected users corresponding to Figures (a) and (b) were selected for on-site inspections in a 
county in CZ. Ultimately, both users were confirmed as electricity thieves. One user engaged in bypassing the 
meter to steal electricity, with the meter reading a current of -0.1 to 0.4 A, while the actual incoming current was 0.6 
to 1 A, constituting electricity theft. The other user tampered with the meter to steal electricity, causing inaccurate 
meter readings to achieve the purpose of electricity theft.   
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(a)User 1 

 

(b)User 2 

Figure 6: The correlation between line loss and daily electricity in the user platform area 

III. B. 2) Electricity theft detection results for different models 
Figure 7 compares the results of different models in identifying electricity theft types with actual on-site inspections. 
It can be seen that the ARMA model proposed in this study provides anti-theft results that are closer to the actual 
on-site inspection values. For the three types of electricity theft—undervoltage theft, altering the wiring method of 
high-voltage metering devices, and neutral point creation method theft—the diagnostic results align with the actual 
inspection results, with the number of diagnostic results being 16, 12, and 12, respectively. In contrast, traditional 
anti-theft models show greater discrepancies with actual on-site inspection data, with some even exceeding the 
actual on-site inspection results. This demonstrates the superiority of the ARMA-based anti-theft model proposed 
in this study for diagnosing electricity theft types. 
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Figure 7: Different models diagnose the type of cracker and the actual field survey 

III. C. Application Verification 
III. C. 1) Treatment Methods 
Abnormal user electricity consumption data primarily includes abnormal electricity consumption, current, and 
voltage anomalies. By analyzing user data, it is possible to distinguish between normal and abnormal user 
electricity consumption characteristics and use this to predict future user electricity consumption. Experimental 
testing analyzed the data using an ARMA-based user electricity consumption feature extraction algorithm to extract 
user electricity consumption features. The algorithm is then used for electricity theft diagnosis. By analyzing daily 
data for electricity theft and unauthorized usage, the algorithm identifies users suspected of electricity theft. Further 
confirmation is required, and the following procedures should be followed:   

(1) Anti-theft verification   
On-site inspection to identify related electricity theft devices or damaged power equipment. For example, 

photographing the electricity theft scene and identifying the electricity theft user.   
(2) Estimating the time of electricity theft 
Carefully understand the actual electricity usage situation, compare and analyze monthly electricity consumption 

over the past few years to identify suspicious points, and do not rely on the electricity thief's own statements to 
determine the time of electricity theft. 

(3) Determining the amount of stolen electricity 
1) The amount of electricity stolen by illegally connecting to the power supply facilities of the power supply 

company is calculated by multiplying the rated capacity of the illegally connected equipment (kVA is considered kW) 
by the actual electricity usage time. 

2) For electricity theft through other means, the stolen electricity volume is calculated by multiplying the rated 
current value of the billing electricity meter (for meters with current limiters, the current value set by the limiter) by 
the capacity (kVA is equivalent to kW) and the actual electricity theft duration. 
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3) When the duration of electricity theft cannot be determined, the number of days of theft shall be calculated 
based on a minimum of 180 days. The daily theft duration shall be calculated as 12 hours for power users and 6 
hours for lighting users. 

(4) Electricity theft must be dealt with quickly and accurately. 
Once electricity theft is confirmed, the power supply shall be cut off immediately in accordance with relevant 

regulations. While protecting the scene, the type of electricity theft shall be determined and the “Work Order for 
Handling Electricity Breach and Electricity Theft” shall be filled out in a timely manner and signed by the person 
responsible for the electricity theft. 

 
III. C. 2) Test Cases 
Using the same analytical method, we once again identified electricity theft at a woodworking factory in a certain 
city within our jurisdiction, as shown in Tables 1–3: 

An on-site inspection found that the user had privately modified the electricity meter to reduce its readings. 
According to Article 100 of the “Power Supply Business Rules,” CZ factory was required to make up for 1,354 units 
of electricity and 1,126.528 yuan in electricity fees for the electricity theft that occurred on October 1, 2023. The 
algorithm proposed in this paper can effectively detect abnormal electricity usage by users. When electricity usage 
fluctuations exceed 15%, further analysis of relevant indicator data can be conducted to assess the extent of 
electricity theft. When the probability of electricity theft reaches the threshold, personnel are dispatched for on-site 
inspection. Through statistical analysis of actual data, power supply personnel found that the probability of users 
engaging in electricity theft has increased compared to previous periods, achieving good results. 

Table 1: User electricity theft test case 

Customer Number User name Recharge power Make up for the electricity bill Filing mark Occurrence time Nature 

6900000496 Cz factory 1354 1126.528 NO 2023/10/1 Electricity theft 

Table 2: Annual electricity bill for users 

Electricity bill year and 

month 

Battery 

power 

Electricity 

bill 
Type of electricity charge 

Electricity bill 

frequency 

Planning 

status" 

Current status 

Date 

2023/12/1 1189 989.248 Normal electricity bill 1 Issue 2023/12/16 

2023/11/1 1248 1038.336 Normal electricity bill 1 Issue 2023/11/17 

2023/10/1 1354 1126.528 
Compensation for illegal theft 

charges 
1 Issue 2023/10/1 

2023/10/1 679 564.928 Normal electricity bill 1 Issue 2023/10/1 

2023/9/1 1063 884.416 Normal electricity bill 1 Issue 2023/9/1 

2023/8/1 2348 1953.536 Normal electricity bill 1 Issue 2023/8/1 

2023/7/1 1293 1075.776 Normal electricity bill 1 Issue 2023/7/1 

2023/6/1 1452 1208.064 Normal electricity bill 1 Issue 2023/6/1 

2023/5/1 449 373.568 Normal electricity bill 1 Issue 2023/5/1 

2023/5/1 900 748.8 Normal electricity bill 1 Issue 2023/5/1 

2023/4/1 1165 969.28 Normal electricity bill 1 Issue 2023/4/1 

2023/3/1 963 801.216 Normal electricity bill 1 Issue 2023/3/1 

2023/2/1 1936 1610.752 Normal electricity bill 1 Issue 2023/2/1 

2023/1/1 1262 1049.984 Normal electricity bill 1 Issue 2023/1/1 
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Table 3: The base figure of the user's annual  

Reading type 
Combine

d ratio 

Last 

number 

This 

number 
Transcribe 

Submet

er 

Check for 

residual 

electricity 

Last time I checked 

the current amount of 

electricity 

Sheet time 

Work (total) 100 657.49 772.46 6185 0 1765 1132 
2023/12/1

1 

Active (peak) 100 253.18 279.86 2486 0 1438 4168 
2023/12/1

1 

Work (valley) 100 130.96 145.35 1342 0 1352 2542 
2023/12/1

1 

No work (total) 100 494.65 498.18 91 0 0 7408 
2023/12/1

1 

The maximum quantity 

is work (total) 
100 0 0 0 0 0 38 

2023/12/1

1 

Work (total) 15 731.63 800.46 1642 0 1168 894 
2023/11/1

4 

No work (total) 15 945.31 981.36 0 0 0 5348 
2023/11/1

5 

Work (total) 15 694.08 730.49 595 0 596 1065 
2023/10/1

8 

No work (total) 15 969.44 985.23 0 0 0 8869 
2023/10/1

9 

IV. Conclusion 
This paper uses an ARMA time series model to obtain user electricity consumption data, construct a Hermitian 
matrix, and standardize the matrix, thereby extending RMT from a purely Gaussian environment to a non-Gaussian 
environment. Based on the extracted user electricity consumption behavior features, this paper proposes an 
ETD-SAC electricity theft detection model based on a time series-level connection autocorrelation mechanism. 

Through a combination of simulation and empirical verification, the effectiveness of electricity consumption 
behavior detection and anti-theft applications is validated. The ARMA model constructed in this paper achieves a 
consistently higher accuracy rate than unsupervised learning detection models in user electricity consumption 
behavior detection. The accuracy rate of the ARMA detection model reaches its peak at a detection rate of 
approximately 30%-40%, achieving an accuracy rate of 84.85%, which holds significant value for anti-theft 
behavior detection. 

The ARMA model's results are closer to actual on-site measurements in anti-theft applications. The diagnostic 
results for the three types of electricity theft—undervoltage theft, altering high-voltage metering device wiring 
methods, and neutral point creation methods—remain consistent, with diagnostic result counts of 16, 12, and 12, 
respectively. 

In anti-theft electricity applications, the model detected an electricity theft incident at a certain factory in CZ on 
October 1, 2023, requiring the recovery of 1,354 units of electricity and 1,126.528 yuan in electricity fees. After 
using the model for anti-theft electricity detection on users, positive results were achieved.   
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