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Abstract As an emerging power system form, the power output characteristics of optical storage-charging 
integrated microgrids are characterized by significant intermittency and stochasticity, which bring new challenges to 
the safe and stable operation of distribution grids. Aiming at the problem of evaluating the impact of power fluctuation 
of optical storage-charging microgrids on the reliability of distribution grids, this paper constructs a full-time 
simulation and analysis model based on time series data and a hybrid CNN-GRU neural network prediction model. 
By analyzing different fault scenarios, a microgrid reliability assessment index system is established, and the 
method of extracting spatial features by convolutional neural network and capturing timing features by gated 
recurrent unit is applied to realize accurate prediction of PV power. The case analysis based on the IEEE RBTS 
test system shows that the SAIFI index of the distribution system decreases from 1.6354 to 1.4795 after microgrid 
access, and the power supply availability rate increases from 0.99936 to 0.99947, which significantly improves the 
system reliability. The prediction accuracies of the CNN-GRU model are better than those of the traditional methods 
in all four seasons, and the NMAI indexes of the CNN-GRU model are better than those of the traditional methods, 
and the NMAI indexes are better than the traditional methods in all four seasons. Attention model with a maximum 
reduction of 59.2% in NMAE metrics and 45.4% in NRMSE metrics. The results verify the effectiveness of the 
proposed model in microgrid output fluctuation assessment and prediction, and provide theoretical support for 
distribution network planning and operation. 
 
Index Terms Time series data, optical storage charging microgrid, output fluctuation, distribution grid, CNN-GRU, 
reliability assessment 

I. Introduction 
In recent years, in order to promote the reduction of carbon emissions and realize green development, electric 
vehicles have been favored and supported by more users for their clean and almost zero-emission advantages [1]. 
As a new type of load, the charging load of electric vehicles is mainly influenced by the user's life habits with great 
randomness [2]. On the one hand, most of them are highly dependent on external power supply and cannot realize 
independent power supply; on the other hand, there is a lack of stable internal energy storage equipment, which 
makes it impossible to regulate energy flexibly [3]-[5]. Meanwhile, due to the proliferation of electric vehicles, a large 
number of electric vehicles charging into the grid will lead to an increase in the peak-valley difference of the grid, 
further aggravating the burden of the safe operation of the power system [6], [7]. Therefore, combining PV systems, 
energy storage systems and charging piles can effectively utilize their respective advantages to obtain better 
economic and environmental benefits [8], [9]. 

The complementary nature of PV systems and energy storage systems in microgrids can give full play to their 
respective strengths, both through PV power generation to electric vehicles and other loads direct power supply to 
realize the local consumption of PV energy and reduce the impact of electric vehicle charging on the power system 
[10]-[13]. At the same time, the energy storage system can effectively alleviate the uncertainty of PV output and 
improve the utilization rate of PV power, store part of the electrical energy when the PV power generation is large, 
and supply power to electric vehicles and other loads when the PV power generation is insufficient [14]-[16]. 
However, considering that the grid integration of large-scale renewable energy generation can adversely affect the 
normal operation of the power system, it is necessary to evaluate the power output fluctuation of the photovoltaic 
storage-charged microgrid in order to formulate an optimal scheduling strategy for the microgrid [17]-[20]. 
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This study proposes a method for assessing the impact of power output fluctuation of optical storage-charged 
microgrids on distribution grids based on time series data. Firstly, a full-time sequence simulation model containing 
the microgrid distribution system is established, and by analyzing the response characteristics of the system under 
different fault scenarios, an assessment index system is constructed with comprehensive consideration of reliability 
and economy. Then, the key factors affecting PV power are analyzed in depth, including seasonality, radiation 
intensity, temperature and humidity and other environmental parameters, and a CNN-GRU hybrid neural network 
model is constructed to realize the accurate prediction of PV power, which provides data support for the assessment 
of power fluctuation of microgrid. 

II. Reliability assessment model for microgrid-containing distribution networks based 
on time series data 

In this chapter, based on the time series data, the reliability assessment of the distribution network containing the 
optical storage and charging microgrid is carried out through full time series simulation analysis with reliability 
indexes, and the economic modeling of the optical storage and charging microgrid is realized. 
 
II. A. Full-time sequence simulation and analysis method for optical storage charging microgrids 
For microgrids, the reliability of the system is more susceptible to the disturbance of the DG output characteristics, 
the reliability of the components, the operation mode of the ESS and the load timing fluctuations. In this paper, the 
failure of MT, PV, and ESS in one and only one component is called the first-order fault, taking into account the first-
order faults of DG and ESS, and assuming that the lines and transformers can work normally, and whether they fail 
or not does not affect the reliability of the system, the state of the components and load curtailment or not at each 
time period are classified by the full-time sequence simulation method. The scenarios are classified. Where 

DG ( )P h  
is the total MT and PV output power. 

(1) Scenario 1: MT, PV and ESS are all fault-free. At this time, ESS flexibly changes the operation mode according 
to the possible power deficit between 

DG ( )P h  and the total power of the load to maintain the system balance, if 

there is still a power deficit after ESS is fully discharged, then the load is cut max( ) ( ) ( ) ( )L
shedding L DG dchP h P h P h P h   . 

(2) Scenario 2: MT fails, PV and ESS are normal. At this time, the microgrid is prioritized by the PV, ESS 
discharges to make up for the shortfall, and if there is still a power deficit after ESS discharges completely, the load 
is cut at this time max( ) ( ) ( ) ( )L

shedding L PV dchP h P h P h P h   . 

(3) Scenario 3: PV is in fault state or intermittent period, MT and ESS are normal. At this time, the system power 
is supplied by MT, and the shortfall is made up by ESS discharge. If there is still a power shortfall after ESS discharge, 
the load is cut max( ) ( ) ( ) ( )L

shedding L MT dchP h P h P h P h   . 

(4) Scenario 4: ESS fails, MT and PV are normal. Due to the randomness of PV output power and the lack of 
energy caching device to suppress its output, it is necessary to cut the load power equal to the PV output to maintain 
the system balance, at this time, the microgrid is still supplied by the MT, and the cut load ( ) ( ) ( )L

shedding L DGP h P h P h  . 

 
II. B. Reliability Assessment Metrics and Processes for Distribution Grids with Microgrids 
II. B. 1) Reliability indicators 
Reliability of power supply is a primary consideration in the capacity planning of distribution networks containing 
microgrids. For this reason, reliability indicators that intuitively reflect the demand of various types of load users and 
sensitively characterize the changes in the capacity and power of microgrids should be selected. The probabilistic 
indicators selected in this paper include Loss of Load Probability (LOLP), Average Supply Availability Indicator 
(ASAI), Frequency and Duration Indicators, including System Average Outage Duration Indicator (SAIDI), Customer 
Average Outage Duration Indicator (CAIDI), System Average Frequency of Outages Indicator (SAIFI), and 
Electricity Shortage Indicator (ENS). Upon convergence comparison, the indicator CAIDI converges significantly 
slower than the other indicators. After setting, the variance coefficient of CAIDI is less than 0.016 as the sampling 
termination condition, and the calculation of the variance coefficient is shown in equation (1): 

 
CAIDI

CAIDI
CAIDI

V

H
E

 
 (1) 

where, CAIDI , CAIDIV , CAIDIE  are the coefficient of variance, variance, and expectation of CAIDI, respectively, and 

H  is the simulation length. 
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In this paper, the variance coefficient of the indicator with the slowest convergence rate is used as the reference 
for sampling termination. After the convergence test, with 8 years as the simulation length and a sampling interval 
of 1h, the sampling termination condition is met. 

 
II. B. 2) Reliability assessment process 
In this paper, we carry out a full-time simulation reliability assessment of distribution networks containing microgrids, 
which consists of the following basic steps: 

(1) Initialize the data and set the simulation time. 
(2) According to the failure rate of each component, find out the failure-free time ,TTF iT  of component i , and take 

the minimum value of ,TTF iT  as the system uptime, and accumulate it into the total simulation time. 
(3) Find the component i  repair time ,TTR iT  based on the repair rate of each component. 
(4) Based on the ,TTF iT  and ,TTR iT  of the components, calculate the operating state sequence of all components 

during the total simulation time. 
(5) Based on the state sequences of the components, the state sequences of the system are obtained and 

accumulated to get the reliability index value of the system. 
 

II. C. Economic modeling of optical storage charging microgrids 
II. C. 1) Objective function 
Based on the completion of the preparatory work for the system reliability assessment, the microgrid total cost 
minimization function model shown in Eq. (2) is established to seek the optimal configuration of DG and ESS: 

 min MT PV ESSC C C C    (2) 

where, 
MTC , 

PVC  and 
ESSC  are the MT yearly cost, PV yearly cost and ESS full life cycle cost respectively. 

(1) The MT and PV annual cost functions are: 

 0 0

0

(1 )

(1 ) 1

MT

MT

y

MT MT MT MTy

r r
C N

r
 
 

    
 (3) 
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 
 

    
 (4) 

where 
MT  and 

PV  are the MT and PV construction costs, respectively. 
0r  is the discount rate. 

MTy  and 
PVy  

are the MT and PV operating years, respectively. 
MT  and 

PV  are the MT and PV annual operation and 

maintenance costs, respectively. 
MTN  and 

PVN  are the number of MT and PV units, respectively. 

(2) The ESS full life cycle cost function is: 

 0 0
, ,

0

, ,

(1 )
( ( ) ( ))

(1 ) 1

( ( ) ( ))

ESS

ESS

ESS CC OC

y

CC E ESS ESS P ESS ESS y

OC E ESS ESS P ESS ESS

C C C

r r
C C E h C P h

r

C C E h C P h 

  


   
 

  

 (5) 

where, 
CCC  and 

OCC  are the ESS one-time construction cost and O&M cost, respectively. ,E ESSC  and ,P ESSC  are 
the ESS unit capacity cost and unit power cost, respectively. 

ESSy  is the ESS operating life.   is the ratio of O&M 
cost to initial investment cost for ESS operation to the target year. 

 
II. C. 2) Constraints 
The constraints containing ESS charging and discharging power, ESS state of charge (SOC) and system power 
balance are written according to the objective function setting: 

 

min max

max max

( )

( ) ( ) ( ) ( )

( ) ( ) ( )

SOC SOC SOC

L PV MT ESS

dch ESS ch

S S h S

P h P h P h P h

P h P h P h

  
   
  

 (6) 

where, max
SOCS  and min

SOCS  are the upper and lower SOC tolerance limits, respectively. 

 
II. D. Analysis of examples 
II. D. 1) Basic data 
An arithmetic case analysis is performed on the IEEE RBTS test system with the IEEE RBTS Bus6-F4 feeder, and 
the microgrid power supply area is shown in Figure 1. 
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Figure 1: Improved IEEE RBTS Bus6-F4 system 

The system has 22 load points, 22 distribution transformers, 29 lines, 3 circuit breakers, one sectionalized switch 
and 576 users, and the load parameters and equipment reliability parameters and feeder segment data are shown 
in Tables 1 to 3. The microgrid islanding operation mode switching success probability is set to 0.88, the microgrid 
internal load cut sequence is LP14-LP18 in order, and the microgrid scenery natural resources are adopted from 
the data of a region in central China. 

Table 1: Load data 

Load point serial number Peak load /kW 
Number of users 

/households 
Load point serial number Peak load /kW 

Number of users 

/households 

2 331.8 128 7 804.7 2 

5 376.5 130 9,21 748.2 2 

1,6 304.6 150 3,13,17 660.8 2 

15,20 511.2 2 10,12,16,22 291.4 78 

4,18 692.3 2 8,11,14,19 285.9 80 

 

Table 2: Reliability parameters of the equipment 

Name Failure rate Average repair time /h 

Line 0.04 times/ (km · year) 3.5 

Distribution transformer 0.012 times/ (Taiwan · year) 28 

Switch 0.005 times per year 5 

 

 



A model for evaluating the impact of power fluctuation of optical storage and charging microgrids on the distribution network based on time series data 

972 

Table 3: Feeder section data 

Feeder type Length /km Feeder section serial number 

1 0.5 7,13 

2 0.65 27 

3 0.7 9,21 

4 0.8 4,10 

5 1.7 3,5,8,15,20,28 

6 2.4 2,6,18,23,26 

7 2.7 1,12,16,22,15 

8 3.3 11,17,19,24,19 

9 3.6 14 

 
Three scenarios are set up in this chapter, Scenario 1 without microgrids and Scenarios 2 and 3 containing 

microgrids with different power configuration capacities. By comparing the three scenarios, the impact of microgrid 
access on the reliability of the distribution network can be quantitatively analyzed. The specific configuration scheme 
of microgrid capacity is shown in Table 4. 

Table 4: Microgrid capacity configuration scheme 

 Wind power capacity /MW Photovoltaic capacity /MW Battery capacity /MW 

Scheme 1 0 0 0 

Scheme 2 2 2.5 9 

Scheme 3 1.5 2 9 

 
II. D. 2) Calculation results of reliability indicators 
The load point reliability indicators under the three scenarios are shown in Fig. 2, where (a) and (b) denote the fault 
rate and average annual outage time, respectively. It can be seen that the reliability indexes of the load points within 
the microgrid have improved significantly, the average annual failure rate and average annual outage time have 
decreased significantly, and the improvement of the reliability of important load points is especially obvious. Since 
this paper does not take into account the external power supply of the microgrid, it is not possible to see the impact 
of the microgrid on the reliability of power supply to its external load points. Comparing the different capacity 
allocation schemes, it can be seen that increasing the allocated capacity of distributed power sources can help 
improve the reliability of power supply at load points. However, microgrid capacity allocation not only needs to 
consider the reliability, but also needs to consider the economy, environmental protection and other indicators, 
microgrid capacity optimization is a very important aspect of microgrid planning and design. 

  

(a) Failure rate (b) Average annual power outage time 

Figure 2: Reliability indicators of load points before and after microgrid access 
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The reliability indicators for the distribution system under different configuration scenarios are shown in Table 5, 
where there is no microgrid access in scenario 1. From the data in the table, it can be seen that microgrid access 
improves the power supply reliability of the distribution system, which is due to the fact that the microgrid has a 
certain probability to turn into island operation when the distribution network components fail, ensuring the 
continuous and stable power supply of loads in the microgrid, especially the important loads. Comparison of the 
calculation results of Scenario 2 and Scenario 3 shows that increasing the distributed power configuration of the 
microgrid can improve the reliability of the system, but the increase in the configuration capacity affects the economy 
of the system, so the power capacity of the microgrid should be optimally configured according to the actual situation. 

Table 5: Reliability indicators of the power distribution system 

 SAIFI (times/user · year) SAIDI (h/ user · year) ENS (MW ·h/ year) ASAI 

Scheme 1 1.6354 6.5274 35.62 0.99936 

Scheme 2 1.4795 5.8789 30.15 0.99947 

Scheme 3 1.44961 6.0147 30.79 0.99942 

 
The reliability indicators of the microgrid system under different configuration schemes are shown in Table 6. 

Comparing the reliability indexes of the whole distribution system, it can be seen that the improvement of the power 
supply reliability indexes of the microgrid system is obvious, indicating that the microgrid has a significant effect in 
improving the power supply reliability of its internal loads. Comparing different configuration schemes, it can be 
seen that increasing distributed power capacity allocation is conducive to improving the reliability of the microgrid 
system. 

Table 6: Reliability indicators of microgrids under different configuration schemes 

 SAIFI (times/user · year) SAIDI (h/ user · year) ENS (MW ·h/ year) ASAI 

Scheme 2 0.8247 3.2583 2.52 0.99975 

Scheme 3 0.9074 3.5749 2.97 0.99971 

 

III. CNN-GRU based power fluctuation prediction for optical storage and charging 
microgrids 

In order to further assess the impact of photovoltaic storage-charged microgrid power fluctuations on the distribution 
network, this chapter analyzes the influencing factors of photovoltaic (PV) power and realizes an accurate prediction 
of short-term PV power, i.e., power fluctuations, in microgrids by using a hybrid CNN-GRU neural network model. 
 
III. A. Analysis of factors affecting the power of photovoltaic power generation 
In order to find the effect of meteorological environmental factors on PV power generation, in this section, a 
laboratory 15kWp vegetative PV power generation system will be analyzed in conjunction with the NWP data during 
the same observation time in the region, and the main environmental factors to be investigated include seasonal 
factors, radiation intensity factors, temperature factors, and humidity factors. 

(1) Influence of seasonal factors on PV power generation 
The power output curves of the PV power generation system on a typical day in four seasons are shown in Fig. 

3. It can be seen that different seasons have different sunrise and sunset times, which affects the length of the daily 
PV power generation time: summer sunrise is earlier and sunset is later, and the PV power generation time is longer 
in a day. In winter, the sunrise time is late and the sunset time is early, and the PV power generation time is shorter 
in a day. At the same time, because the PV power is affected by the temperature, the daily power generation in 
winter is reduced compared with other seasons. 

 

Figure 3: Photovoltaic power curves on typical days in four seasons 
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(2) Influence of meteorological conditions on photovoltaic power generation 
Photovoltaic power curve in different seasons has different characteristics, from the perspective of energy 

conversion, photovoltaic power generation energy from solar radiation energy, but also by the environmental 
temperature, humidity and other meteorological conditions. In this section, solar radiation intensity, temperature and 
humidity are taken as several important meteorological condition influences affecting PV output power, and the 
relationship between each influence factor and PV output power is analyzed by graphing method. In order to 
facilitate the comparison, all data are normalized as shown in equation (7): 

  min

max min

1,2, ,i
i

x x
M i n

x x


  


 (7) 

iM  and ix  denote the normalized and actual values, respectively, and minx  and maxx  denote the minimum 

and maximum values in the data set, respectively. 
The PV power curve and the total radiation intensity curve are shown in Fig. 4. It can be seen that there is a 

strong consistency between the PV power curve and the radiation intensity curve, which indicates that the PV power 
and the solar radiation intensity have certain correlation characteristics. However, in some moments, the solar 
radiation intensity may be consistently high but the PV output power does not increase consistently, this is because 
in addition to the radiation intensity affects the PV power, there are other factors affecting the PV output power. 

 

Figure 4: Relationship between photovoltaic power and radiation intensity 

For cloudy and rainy weather, due to cloud cover, part of the solar radiation by the scattering effect of clouds 
become scattered radiation, the total solar radiation Q is equal to the scattering radiation D and direct radiation S' 
sum, when the cloudy and rainy weather, more clouds, direct radiation is small, more scattered radiation, direct 
radiation and scattered radiation is smaller, the daily power generation is less, sunny days with good sunshine 
conditions is the opposite. In this paper, the ratio of solar scattered radiation D to direct radiation S' is the radiation 
scattering ratio R. From the above theory, the PV power fluctuation index K = daily power generation / radiation 
scattering ratio is defined. 

In order to specify the relationship between the radiation scattering direct ratio and daily power generation, using 
statistical methods, the laboratory 15kWp photovoltaic power generation system August 5, 2022 - August 30, 2022 
normal operation day PV daily power generation effective data collected with the day of the radiation scattering 
direct ratio and fluctuation index K, to get the photovoltaic power fluctuation index shown in Table 7. 

It can be seen that the daily power generation basically decreases with the increase of the radiation scattering 
direct ratio. When the daily power generation is larger, the reason is that the weather conditions are better on that 
day and the PV power curve is smoother. When the daily power generation is small, the reason is that the weather 
conditions on that day are poor, mostly cloudy and rainy, and the fluctuation of the PV power curve is more violent. 
According to the fluctuation index K and the corresponding actual PV power fluctuations, its characteristics can be 
summarized as follows: when K>160 for PV fluctuations smaller, 40<K<160 PV power fluctuations are more intense, 
K<40 PV power fluctuations are intense. 
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Table 7: Photovoltaic power generation power fluctuation index 

Date 5 6 7 8 9 10 11 12 13 14 15 16 17 

Daily power generation (Kw·h) 58.21 64.94 64.93 47.26 61.57 30.95 73.42 60.84 53.42 49.73 75.86 64.98 47.55 

Radiation diffusion-direct ratio (D/S') 0.526 0.514 0.632 1.745 0.863 3.694 0.385 1.678 1.975 1.273 0.281 0.574 2.042 

Volatility index K 110.7 126.3 102.7 27.1 71.3 8.4 190.7 36.3 27.0 39.1 270.0 113.2 23.3 

Date 18 19 20 21 22 23 24 25 26 27 28 29 30 

Daily power generation (Kw·h) 36.84 40.32 63.75 65.41 51.46 57.42 58.63 21.81 50.27 68.43 66.59 57.82 54.91 

Radiation diffusion-direct ratio (D/S') 6.044 28.745 1.641 1.053 2.432 1.964 1.653 200.415 5.624 0.307 0.526 0.910 1.908 

Volatility index K 6.1 1.4 38.8 62.1 21.2 29.2 35.5 0.11 8.94 222.9 126.6 63.5 28.8 

 
The PV power and temperature relationship curve is shown in Fig. 5. It can be seen that the atmospheric 

temperature and the PV output power have a similar trend, the PV output power increases the temperature also 
rises, the PV power decreases the temperature also decreases, which shows that the PV power and the 
atmospheric temperature has a certain positive correlation. 

 

Figure 5: Relationship between PV power Generation capacity and temperature 

The PV power versus relative humidity curve is shown in Fig. 6. It can be observed that the relationship between 
relative humidity and PV power in a day shows an opposite trend, i.e., the valley region of the humidity curve 
corresponds to the peak region of PV power, which is due to the fact that the time tends to midday when the solar 
radiation is enhanced and the atmospheric relative humidity decreases and the PV power increases. This is because 
the time tends to evening when solar radiation decreases and atmospheric humidity increases the PV power 
decreases, which indicates that the relative humidity also has a strong correlation with the PV output power. 

 

Figure 6: The relationship between PV power generation capacity and air relative humidity 

III. B. Short-term PV power prediction model based on CNN-GRU 
In order to improve the prediction accuracy of photovoltaic (PV) power in light-storage-charged microgrids, a short-
term PV power prediction model based on a hybrid CNN-GRU neural network is constructed in this chapter. 
 



A model for evaluating the impact of power fluctuation of optical storage and charging microgrids on the distribution network based on time series data 

976 

III. B. 1) Convolutional Neural Networks 
Convolutional Neural Network (CNN) [21] is a deep learning algorithm often used for image, text and signal inputs 
and consists of a stack of layers for extracting features of an object. CNN consists of an input layer, a convolutional 
layer, a pooling layer, a fully connected layer, and an output layer. Convolutional layer is the key to efficient feature 
extraction in CNN, in this paper convolutional layer is mainly applied to feature extraction of PV power related data. 

(1) Input layer: the input layer mainly receives data related to PV power plant, such as meteorological information 
irradiance, temperature, etc. and historical power data. And the input data are preprocessed, including de-mean 
and normalization. 

(2) Convolutional layer: the convolutional layer is mainly used to extract features from the input data. The 
convolution operation extracts high-level features from the input data by sliding the convolution kernel over the input 
data, and the local information is convolved with the convolution kernel, and the convolution operation process is 
shown in equation (8): 

  1j j j jM f M W b    (8) 

where jM  is the input characteristic of the j th layer, ( )f x  is the activation function,   is the convolution 
operation, jW  is the weight of the convolution kernel of the j th layer, and jb  is the threshold. 

(3) Pooling Layer: The main role of the pooling layer is to compress the data and reduce the computational 
complexity while maintaining important information. The most common pooling operation is maximum pooling, which 
selects the maximum value in each pooling window as a representative. The pooling layer helps to improve the 
translational invariance of the model and reduce overfitting. 

(4) Fully Connected Layers: the main role of fully connected layers is to map high-level features from the 
convolution and pooling layers to the output of the network. These layers contain multiple neurons, each connected 
to all neurons in the previous layer. The fully connected layers generate the final features for representation by 
learning the weights and biases. 

(5) Output Layer: the main role of the output layer is to output the result of the CNN network. 
The core of CNN lies in the use of local sensing and parameter sharing mechanism. This unique design effectively 

reduces the complexity of model parameters, which in turn significantly improves the training speed and efficiency 
of the network. 

 
III. B. 2) Door-controlled circulation units 
Gated Recurrent Unit (GRU) [22] is a variant of Long Short-Term Memory (LSTM) networks, which is widely used 
in academia. GRU uses reset gates and update gates to overcome the long term dependency problem and 
combines the data units and hidden layer states to solve the gradient vanishing problem. Compared to LSTM, GRU 
networks contain only two gate structures, reducing the number of training parameters. This makes the GRU 
network easier to converge and alleviates the overfitting problem of the LSTM network, while maintaining the 
excellent performance of the LSTM network in prediction tasks. The specific formulation of the GRU network is 
shown below: 
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 (9) 

where 
tz  denotes the update gate, which is mainly used for forgetting and remembering. 

tr  is the reset gate, 
which is used to determine whether or not to merge the current state with previous information. 

th  denotes an 
intermediate memory state. 

zW  and 
rW  are the connection weights of the update and reset gates, respectively. 

  and tanh  are activation functions. 
 

III. B. 3) CNN-GRU hybrid neural network models 
The hybrid CNN-GRU structure proposed in this chapter is shown in Fig. 7. In the proposed structure, CNNs are 
used for features to perform sequence representation and then effective sequence learning is performed using 
multilayer GRUs.The CNN layers are used to extract spatial features from the input fine data and then feed them 
into the multilayer GRUs.In this chapter, two CNN layers with Relu activation function and kernel size 2 are used, 
and the filters of the first and the second layers are 1 × 16 and 1 × 8, respectively .After extracting the spatial 
features, they are fed into the GRU layer. Two GRU layers are used to model the temporal features and finally the 
predicted values are output through the fully connected layers. 
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Figure 7: CNN-GRU network Structure 

In PV power prediction, spatial features are extracted by CNN network and then temporal features are extracted 
by GRU network, which can take into account the hidden information and obtain better prediction results. 

 
III. C. PV Power Prediction and Result Analysis 
Multiple models are selected for comparative analysis to verify the advantages of the prediction model proposed in 
this paper, and the models involved in the comparison are LSTM, LSTM-Attention and GRU, respectively. one day 
in each of the four seasons is randomly selected for the prediction of PV power generation, and the prediction 
curves are obtained and compared with the actual data, and the comparison of the prediction results of different 
seasons is shown in Fig. 8, and the results of the comparison of the different seasons are shown in Fig. 8, and the 
results of the comparison of the different seasons are shown in Fig. 8, and the results of the comparison of the 
different seasons are shown in Figs. 8, (a) ~ (d) The comparison results of different seasons are shown in Fig. 8, 
(a)~(d), which represent the comparison results of four seasons, namely, spring, summer, fall and winter, 
respectively. 

It can be visualized from the prediction curve: in spring, the fluctuation of PV power is not obvious, and the PV 
power will drop suddenly in a few periods due to cloud cover and other circumstances. In summer, with sufficient 
light and good weather conditions, the power fluctuation is almost non-existent and the PV power is the highest in 
the year. In the fall, the PV power fluctuates more, the accuracy of the prediction results decreases, and the PV 
power is higher. Compared to other seasons, in winter, there is a significant decrease in PV power and the power 
generation period is narrowed. 

By training the model for different seasons, the purple line indicating the prediction results of the CNN-GRU PV 
power generation prediction model proposed in this paper is the most overlapped with the dark cyan line indicating 
the actual PV power in all four seasons. It can also be seen that the combined model overlaps with the actual values 
better than the single model, and the LSTM prediction curve overlaps with the actual value curve better than the 
GRU. 

  

(a) Spring (b) Summer 
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(c) Autumn (d) Winter 

Figure 8: Comparison of prediction results in different seasons 

The comparison of performance evaluation indexes of PV power prediction model is shown in Table 8. In order 
to eliminate the influence of data magnitude on the evaluation value, this paper uses the normalized evaluation 
indexes of mean absolute error (NMAE), root mean square error (NRMSE) and coefficient of determination (NR²), 
and the smaller the values of NMAE and NRMSE indexes, the better, and the larger the value of NR² indexes, the 
better. In the table, A, B, C and D represent the datasets for the four seasons of spring, summer, fall and winter, 
respectively. 

It can be seen that the prediction accuracy of the models GRU and LSTM is poor, the accuracy of LSTM-Attention 
is improved due to the addition of the attention mechanism, and the CNN-GRU model proposed in this paper has 
the best prediction effect. Compared with the LSTM-Attention model, the NMAE of this paper's model in the four 
seasons is reduced by 59.2%, 54.5%, 38.4%, and 49.6%, and the NRMSE is reduced by 45.4%, 35.2%, 33.3%, 
and 34.7%, respectively. 

The training datasets of different seasons also have an impact on the prediction accuracy of the model, and the 
model is trained on summer dataset B. Due to the abundant light and better climatic conditions, the resulting 
predictions are more accurate compared to other seasons. Under the training of fall dataset C, the prediction 
accuracy decreases compared to other seasons due to the large fluctuation of PV power and environmental factors, 
and the NMAE and NRMSE in the proposed model in this paper are reduced by 64.4% and 50.4% in summer 
compared to fall, respectively. 

Table 8: Comparison of performance evaluation indicators for prediction models 

Method Evaluation index A B C D 

CNN-GRU 

NMAE 0.0089 0.0080 0.0225 0.0131 

NRMSE 0.0208 0.0197 0.0397 0.0271 

NR² 0.9923 0.9944 0.9798 0.9901 

LSTM-Attention 

NMAE 0.0218 0.0176 0.0365 0.0260 

NRMSE 0.0381 0.0304 0.0595 0.0415 

NR² 0.9818 0.9857 0.9553 0.9758 

LSTM 

NMAE 0.0403 0.0376 0.0481 0.0445 

NRMSE 0.0726 0.0610 0.0908 0.0834 

NR² 0.9519 0.9553 0.9394 0.9476 

GRU 

NMAE 0.0398 0.0382 0.0540 0.0463 

NRMSE 0.0705 0.0652 0.1034 0.0877 

NR² 0.9529 0.954 0.9294 0.9411 
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IV. Conclusion 
The access of the photovoltaic storage-charged microgrid significantly improves the power supply reliability of the 
distribution system, and the IEEE RBTS test system verifies that the distribution system containing the microgrid 
has significant improvement in several reliability indicators compared with the traditional system. The improvement 
in reliability indicators at the load points within the microgrid is particularly prominent, with the system average 
outage duration indicator decreasing from 6.5274 hours to 5.8789 hours, and the power deficit indicator decreasing 
from 35.62 MWh to 30.15 MWh. Through in-depth analysis of the factors affecting PV power, it is found that 
meteorological conditions such as seasonality, radiation intensity, temperature and humidity have a significant 
impact on PV power, and the established model of the relationship between the radiation scattering ratio and daily 
power generation is able to effectively quantify the fluctuation characteristics of PV power. The CNN-GRU hybrid 
neural network model performs excellently in the prediction of PV power, and it has obvious advantages compared 
with a single model, especially under the conditions of sufficient light in summer, the prediction accuracy of CNN-
GRU is very high. The established model not only accurately evaluates the impact of photovoltaic power fluctuations 
on the distribution grid, but also provides a scientific basis for the optimal allocation of microgrid capacity and the 
formulation of operation strategies, which is of great significance for promoting the scale application of distributed 
energy resources. 
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