
International Journal for Housing Science and Its Applications 
Publish September 8, 2025. Volume 47, Issue 1 Pages 1-11 

1 

 
https://doi.org/10.70517/ijhsa47101 
 

A Strategy for Improving the Accuracy of Context-Aware 
Translation Based on Deep Reinforcement Learning in English 
Translation 
Ping Yin1 and Juanyin Liu1,* 
1 Teaching Department of Basic Courses, Hebei Vocational University of Industry and Technology, Shijiazhuang, Hebei, 050091, China 

Corresponding authors: (e-mail: eiessay777@126.com). 
 
 

Abstract The development of globalization has led to increasingly stringent requirements for translation accuracy. This paper 
designs a cross-language English translation model based on deep reinforcement learning and translation quality assessment, 
and selects the Transformer architecture with multi-layer encoder-decoders. Through the reward and punishment mechanism 
of the intelligent NMT system, real-time probability calculations of contextual information are performed to select the most 
appropriate words at the semantic level as components of the target sentence. Combined with a supervised quality assessment 
module, the translated text is scored, and the next word selection is guided. Experiments show that after 934 iterations, the 
BLEU score stabilizes around 97.62%. The F1 score reaches 99.87% after 316 iterations, and the accuracy achieves a stable 
value of 90.74% after 815 iterations. In two-class cross-language English translation tasks, the model's average BLEU scores 
were 90.67% and 93.08%. 
 
Index Terms deep reinforcement learning, contextual information, agent, quality assessment, English translation 

I. Introduction 
With the continuous development of artificial intelligence technology, machine translation is gradually becoming an 
indispensable tool in people's daily lives. Machine translation is a key task in natural language processing, with the aim of 
enabling computers to automatically translate one natural language into another [1]. The concept of machine translation can 
be traced back to the 17th century, but it wasn't until the 1950s that concrete proposals for its implementation emerged. Among 
these, the most notable was Weaver's memorandum, which marked the beginning of machine translation research [2]-[4]. In 
this memorandum, Warren Weaver proposed using computers for translation, particularly suggesting the integration of 
statistical knowledge, cryptography, information theory, logic, and linguistics to address issues of linguistic ambiguity [5], [6]. 
Since then, machine translation has undergone a series of developments; however, to this day, it remains an extremely 
challenging problem that has yet to be fully resolved. 

Machine translation has gone through three key stages: rule-based, statistical learning-based, and deep learning-based. 
However, due to the complexity and ambiguity of language, machine translation systems may produce errors or inaccuracies 
during the translation process, necessitating further optimization and improvement [7]-[9]. Additionally, in traditional machine 
translation, sentences are often translated in isolation without considering their contextual relationships within the broader text 
[10], [11]. However, language serves as a medium for information transmission, where each sentence is interconnected. 
Therefore, translating sentences in isolation may lead to semantic shifts and confusion, failing to accurately convey the original 
meaning [12]. Against this backdrop, context-aware research has emerged as a hot topic in the field of machine translation. 

Context-aware translation utilizes the contextual information surrounding a sentence to more accurately understand and 
translate it, including the context before and after the sentence, the logical relationships between sentences, and the internal 
logical structure of the entire text [13], [14]. By incorporating context-aware technology, machine translation systems can 
better understand the semantic and logical structure of the entire text, thereby improving translation accuracy and fluency [15], 
[16]. 

Although context-aware translation theoretically enhances the quality of machine translation, it still faces several challenges 
in practical applications. First, effectively capturing the contextual relationships between sentences remains a significant 
challenge. Second, the issue of long-range dependencies between sentences is another critical challenge. Additionally, there 
is a lack of large-scale corpora. Throughout history, scholars have offered their insights. Reference [17] explored the 
mechanism of the BERT model in context-aware neural machine translation, which involves concatenating context sequences 
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into a longer sequence, encoding the sequence using the BERT model, and achieving good BLEU scores in several English 
translation tasks. Reference [18] applied an adjusted BERT model to analyze long sentence structures and extract semantic 
relationships in machine translation systems, thereby optimizing the long-distance dependency issue in neural network 
machine translation systems. By combining an attention-guided mechanism, it mitigated ambiguity and omission quality issues 
in translation. Literature [19] combines context-aware mechanisms, sequence-to-sequence models, and self-attention 
mechanisms to enhance machine translation's understanding of textual contextual relationships. Through pre-training and 
large-scale corpus extraction of lexical and syntactic structural relationships, it utilizes contextual information and introduces 
an adaptive adjustment mechanism to perform real-time adjustments to the system, thereby improving the translation accuracy 
of machine translation. Literature [20] starts from the source language side and constructs a pre-training method based on 
global context (including self-supervised pre-training tasks and pre-training models). The model consists of a global encoder 
and a sentence encoder-decoder. This method significantly improves the BLEU score of the context-based machine translation 
model. Literature [21] optimizes context-aware neural machine translation by preserving the decoder state during the 
translation of the current sentence, calculating attention vectors based on this state, and incorporating the target-side context 
as decoder embeddings into the neural machine translation model. Literature [22] constructs an AI translation model that uses 
deep learning to establish semantic relationships between the source-side language and target-side language, combining 
contextual information to improve translation accuracy and fluency. Reference [23] utilizes a transformer-type neural network 
with attention mechanisms to eliminate ambiguity in machine translation, supported by deep learning. It combines context 
embedding and syntactic-semantic analysis to construct a context-aware machine translation system, thereby improving 
translation accuracy and fluency. Reference [24] developed a hierarchical context encoder enabling the hierarchical full 
attention network structure to utilize multiple context sentences, achieving good BLEU scores in three English translation 
corpora experiments, thereby enhancing the performance of context-aware neural machine translation. Reference [25] 
designed a graph-based encoder to enhance context awareness in neural machine translation, primarily by encoding co-
reference relationships in text, achieving a BLEU score of 0.9. Meanwhile, [26] embedded an input coreference model into 
machine translation using context features, leveraging coreference features in the input for translation decisions, resulting in a 
BLEU score 1 point higher. This demonstrates that the machine translation results under this processing method exhibit 
extremely high alignment with reference translations. [27] developed a Japanese-English dialogue corpus, which also includes 
cross-sentence context, and applied it to improve context-aware machine translation. 

Deep reinforcement learning combines the advantages of deep learning and reinforcement learning, enabling it to address 
more complex problems to a certain extent. It employs deep neural networks to handle machine translation tasks [28]. In 
reinforcement learning, deep neural networks can serve as the policy network for an agent, selecting target language sentences 
based on input source language sentences, while reinforcement learning algorithms are used to train the neural network's 
parameters to generate superior translation results [29], [30]. 

This paper uses a Transformer with multi-level encoders and decoders as the basic structure of a cross-language English 
translation model. By combining cross-language contrastive learning loss calculations, it improves the performance of context 
complex information perception and semantic association capture mapping. Through document topic distribution analysis, as 
well as minimizing change loss and semantic distance calculations, the model associates phrase vector representations between 
the source and target ends, integrating contextual information. The problem of evaluating semantic deep reinforcement learning 
strategies is quantified as a step-accumulated reward optimization problem, and an evaluation mechanism is introduced to 
estimate the state-action value function values, thereby identifying the optimal model training path and enhancing cross-
language English translation accuracy. 

II. Building a cross-language English translation model architecture under deep reinforcement 
learning 

II. A. Building a cross-language English translation model 
II. A. 1) Model Framework 
Figure 1 shows the overall framework of the proposed cross-language English translation model based on deep learning and 
context awareness. The model takes a pair of parallel sentences as input and uses the encoder-decoder of the cross-language 
Transformer to calculate the normal cross-entropy loss. The proposed model compares parallel corpora and monolingual 
corpora to learn from them, thereby reducing the expressive gap between different languages and improving translation quality. 
Additionally, this paper introduces an effective alignment augmentation technique that minimizes training discrepancies by 
calculating the contrastive loss between aligned pairs (positive samples) and randomly selected unaligned pairs (negative 
samples), thereby improving training quality. The proposed model fully leverages knowledge from all supervision directions, 
minimizing the representational distance between similar sentences through cross-lingual contrastive learning, ensuring that 
the model adequately learns cross-lingual representations of similar sentences in a shared space. 
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Figure 1: shows the overall framework of the model 

II. A. 2) Cross-language Transformer 
Cross-language English translation models aim to learn a many-to-many mapping function f  for translating from one 
language to another. To distinguish between different languages, this paper adds an additional language identification tag 
before each sentence to differentiate between the source and target sides. The Transformer architecture is widely used in natural 
language processing (NLP) due to its ability to effectively capture contextual information and semantic relationships in text 
predictions. Therefore, the cross-language English translation model proposed in this paper, which is based on deep learning 
and context awareness, is built on the Transformer architecture. 

Cross-lingual Transformers can implicitly learn shared representations across different languages and perceive complex 
relationships between sentences based on context. The cross-lingual Transformer proposed in this paper features 10 encoder 
layers and 10 decoder layers to increase model capacity, thereby better learning semantic relationships between different 
languages. To simplify the training process of deep models, normalization is applied to the encoder and decoder for word 
embedding and pre-normality residual connections. 

Let the cross-language corpus collection be 1 2{ , , , }ML L L L  , where M  is the number of cross-languages. Let ijD  
denote the parallel corpus dataset formed by the corpora iL  and ( , )jL i j M , and D  denote the set of all parallel corpus 
datasets. The cross-lingual Transformer training loss is defined as the cross-entropy loss function, specifically defined as: 
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In the equation: ceL  is the cross-language Transformer training loss; ix  is a sentence in the corpus iL ; jx  is a sentence 
in the corpus jL ;   is the parameter of the cross-language Transformer model; P  is the predicted probability. 

 
II. A. 3) Cross-language comparative learning 
The proposed model introduces cross-language contrastive learning loss, which maps different languages to a shared semantic 
space, thereby improving the learning of correlations between different languages. The core idea of contrastive learning is to 
minimize the representation gap between similar sentences and maximize the representation difference between unrelated 
sentences. 

Given a bilingual translation pair ( , )i jx x D , where ( , )i jx x  is a positive sample. Next, randomly select a sentence jy  
from the corpus jL  to form a negative sample ( , )i jx y . Note that j iL L  may exist. The goal of cross-lingual contrastive 
learning is to minimize the following loss function: 
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In the equation: ctrL  is the cross-language contrastive learning loss; ( )sin   is the similarity function for calculating the 
similarity between different sentences; + and - represent positive and negative signs, respectively; ( )R    is the average 
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aggregated encoding output function for any sentence;   is a control parameter used to distinguish the difficulty of positive 
and negative samples. Additionally, the similarity function between two sentences, ( )sim   is calculated using the cosine 
similarity of the average aggregated encoding output. To simplify the process, negative samples are sampled from the same 
training batch. Then, by maximizing the softmax term sim ( ( ), ( ))i jR x R x  and comparing the loss, the semantic projections 
of two similar sentences are forced to be close to each other. Meanwhile, the softmax function also minimizes the mismatched 
pair sim ( ( ), ( ))i jR x R x , ensuring that the semantic projections of two dissimilar sentences are separated further apart. 

In the training process of the proposed deep learning-based and context-aware cross-language English translation model, 
the model can be optimized by jointly minimizing the contrastive training loss and the Transformer training loss: 

 | |ce ctrL L s L   (3) 

In the formula:   is the balancing coefficient for balancing the two training losses; | |s  is the average sequence length. 
Since ctrL  is calculated at the sentence level, while ceL  is calculated at the corpus level, ctrL  should be multiplied by the 
average sequence length | |s . 

 
II. B. Adding a bilingual recurrent autoencoder to the thematic context 
II. B. 1) Contextual representation modeling based on thematic information 
The meaning of a phrase is influenced by its context. When placed in different contexts, this paper can determine its specific 
meaning with a high degree of probability. To further strengthen the bilingual representation of phrases, this paper incorporates 
contextual information into the representation learning of phrases. 

Following the trend of topic-based machine translation, this paper uses the topic distribution of a document to represent the 
context of phrases in the document. However, in neural networks, the main issue is how to represent data. Here, for 
computational convenience, each topic is treated as a “word,” and each topic is also represented by an n -dimensional vector. 
Similar to the vector representation of words, the vector representations of all topics form a topic embedding representation 
matrix | |n Z

zL R  . 
Since the topic representation of a document is a probability distribution over all topics, this paper performs a weighted sum 

of the vector representations of topics based on their probabilities to obtain the topic representation of the document:   

 ( | )
z

dc p z d z  
 (4) 

In this context, z  and z  correspond to the topic and its embedded representation, respectively; dc  denotes the topic of 
the document. 

During training, this paper can use the method mentioned above to obtain the context representation of the phrase pair 
( , )f e , where fdc  and edc  represent the topic context of phrases f  and e , respectively. Since the context is obtained 
from monolingual documents, this paper can use additional corpora to better train the topic model. It is worth noting that 
during testing, this paper can only obtain the source document's topic context information. Machine translation is the process 
of translating a text from one natural language to another. After translation, although the form of semantic expression changes, 
the essence of the semantics and topics remains unchanged. At the same time, since the topic modeling of the source text and 
the target text are independent, the topic distributions of the two models may not be in the same vector space. Based on the 
above conditions, to obtain the target-side topic distribution, this paper can learn a transformation relationship between the 
source-side and target-side topic contexts. Specifically, for parallel phrase pairs ( , )f e  and their topic contexts ( , )e fdc dc , 
this paper learns the transformation relationship between topic contexts by minimizing the change loss: 
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Among these, (3)
2

n n
f eW R   and (3) 1

2
n

f eb R   are the parameters to be learned. In this way, when the model is tested, this 
paper can use the learned transformation relationship to transform the source-end topic context to the target-end, thereby 
obtaining the target-end topic context. 

 
II. B. 2) Bilingual semantic constraints 
The model in this paper is based on the premise that parallel phrase pairs have identical semantics. The semantic equivalence 
of phrases is conditional, meaning that under the same thematic context, the source phrase and the target phrase have identical 
semantics. Therefore, under the same thematic context, the representations of the two phrases can be mutually supervised 
during learning, with the source phrase representation serving as the true representation of the target phrase, and vice versa. 
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First, this paper uses a fully connected network to obtain the phrase representation dcp  that is known in the thematic 
context: 

 (4) (4)( [ ; ] )dcp g W p dc b   (6) 

Here, (4) 2n nW R   and (4) 1nb R   are network parameters with learning. Where p  is the phrase representation learned 
using RAE, dc   is the topic context corresponding to the phrase obtained from formula (6), and dcp   is the phrase 
representation with topic context information. 

The learning process for obtaining the final short phrase representations at the source and target ends is independent, so the 
corresponding phrase representations with topic information may be in different vector spaces. Even if the phrases have the 
same semantics, the semantic distance between them cannot be directly calculated in this paper. Similarly, the calculation of 
semantic distance involves two directions: the semantic distance between the source-end phrase representation mapped to the 
target-end and the target-end phrase representation, and the semantic distance between the target-end phrase representation 
transformed to the source-end and the source-end phrase representation. Taking the source-end mapped to the target-end as 
an example, the semantic loss is defined as:   

 (5) (5) 2
2 2

1
( | ; ) || ( ) ||

2sem dc f e dc f eE f e e f W f b     (7) 

Here, (5)
2

n n
f eW R   and (5) 1n

fb R   are the parameters to be learned. 
Then, this paper also calculates the semantic loss by maximizing the semantic distance. For positive samples ( , )f e  and 

negative samples ( , )f e , I can obtain: 

 * ( | ; ) {0, ( | ; ) ( | ; ) 1}sem sem semE f e max E f e E f e      (8) 

Here, e  is a negative sample, which is another translation of f  or obtained by randomly replacing words in e . Inter-
sample, this paper can obtain * ( | ; )sernE e f  . 

 
II. C. Translation model architecture based on deep reinforcement learning 
II. C. 1) Reinforcement Learning 
The basic idea behind reinforcement learning (RL) is that an agent (AG) selects an action (A) based on the current interaction 
environment (E), after which the environment transitions with a certain probability and provides the agent with a reward (R). 
The agent repeats this process with the goal of maximizing the reward. Unlike traditional machine learning models, 
reinforcement learning does not use training data with explicit labels, and the training process is more exploratory in nature. 
Therefore, reinforcement learning is more suitable for complex decision-making tasks. 

Reinforcement learning tasks are typically abstracted as Markov decision processes (MDPs): an agent operates in an 
environment E , with a state space X , where each state x X  represents the agent's perception of the environment; The 
set of all actions the agent can take forms the action space A . When an action a A  is applied to the current state x , the 
transition probability function P  causes the environment to transition from the current state to another state with a certain 
probability. Simultaneously, the environment provides feedback to the agent in the form of rewards or penalties based on the 
reward function. Reinforcement learning tasks can be formalized as a Markov decision process quadruple , , ,E X A P R  , 
where :P X A X      specifies the state transition probabilities, :R X A X      specifies the rewards and 
punishments, and when the reward function is only related to state transitions, :R X X   . 

When all four elements of the Markov decision process are known, it is called model-known, and learning in a model-
known environment is called model-based learning. When the model is known, the expected cumulative reward for any policy 
can be estimated. Based on the cumulative function, there are state value functions and state-action value functions:   
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Since MDP has Markov properties, i.e., the next moment state of the system is determined only by the current state, the 
value function takes the form of Bellman's equation: 
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After simple conversion, the state-action value function can be obtained: 
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From the above, it can be seen that when the model is known, the policy evaluation problem is transformed into a dynamic 
programming problem. That is, first solve for the single-step cumulative reward at each time step, then solve for the two-step 
cumulative reward at each state, and iterate until the T -step cumulative reward at each state is obtained. 

 
II. C. 2) Translation Model Framework Structure 
To address exposure bias and translation diversity issues, this paper proposes a cross-language English translation model 
(NMT-Transformer) based on reinforcement learning and machine translation quality assessment. NMT-Transformer 
introduces an evaluation mechanism at the sentence level to guide the model's predictions, ensuring they do not fully converge 
on the reference translation. Figure 2 shows the specific framework structure of the model. It primarily consists of two modules: 
machine translation and machine translation quality assessment. The model's translation module adopts an encoder-decoder 
architecture consistent with the Transformer, while the assessment module employs a sentence-level machine translation 
quality assessment model. 

In the machine translation process, the NMT system acts as an intelligent agent in reinforcement learning, continuously 
interacting with the environment to obtain information about the current state of the environment. Specifically, the probability 

ˆ( | , )t tP y x y  of the source sentence x  and the generated target sentence context at time step t , where ˆ ty  denotes the 
target sentence predicted by the model prior to time step t . The agent makes decisions on the next word to select based on 
the current state of the environment, simultaneously obtaining the reward value after executing the word selection operation 
in the current state and transitioning to the next state. Through reinforcement learning, the agent ultimately identifies the 
optimal translation strategy. Based on the model structure, the machine translation task is described as follows: Given parallel 
corpora, train a machine translation model M  with parameters  ; The machine translation model M  translates the given 
source sentence sequence 1 2( , ,..., )nx x x x  into the target sentence sequence 1 2( , ,..., )ny y y y  where n  and m  are the 
lengths of the source and target sentence sequences, respectively; at time step t , the state ty  defines the target sentence 

1 2( , ,..., )t ty y y y  generated by the translation model M  at the current time step t ; the action ta  is defined as selecting 
the next word 1ty   in the current environment; given the translation data and its HTER score, the machine translation quality 
assessment model Q  with training parameters  , the quality assessment model Q  after supervised training serves as the 
generator of the reward function to provide a quality score ˆ( )QE tScore y  for unseen translations, The machine translation 
model M  interacts with the environment under the guidance of ˆ( )QE tScore y  to generate the next word 1ty  . 
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III. Performance verification and application analysis of cross-language English translation 
models 

III. A. Analysis of the model training process 
III. A. 1) Comparison of model performance on different test datasets 
Different corpus resources have varying effects on model training performance. In this section, we select different corpus 
resources as test datasets and set up model comparison experiments. To provide a clearer comparison of the experiments, the 
models and methods based on different types of corpus resources are compared in the experiments. These three types of corpus 
resources are categorized into three groups: using only bilingual parallel corpora, using only monolingual corpora, and a 
mixture of bilingual parallel corpora and monolingual corpora. For convenience, these three types are labeled as “A,” “B,” and 
“C,” respectively. Specifically, the baseline methods based on “Type A” corpus include ConvS2S and Transformer; the 
baseline methods based on “Type B” corpus include “RNN+back translation” and “unsupervised PBSMT”; and the methods 
based on “Type C” corpus include the baseline method “duality machine translation” and the model proposed in this paper, 
“Transformer+NMT.” Table 1 presents the model performance results across different test datasets in the experiments. The 
proposed model achieves the highest BLEU translation accuracy among the six models by combining bilingual parallel corpora 
with monolingual corpus resources for training. In English-to-Chinese translation, the BLEU scores of the proposed model 
are 29.41%, 29.11%, and 29.54%; in Chinese-to-English translation, the BLEU scores are 38.89%, 37.97%, and 38.62%. 
Through a comparison of cross-language English translation methods based on three different types of corpora, it is clearly 
demonstrated that the proposed model achieves superior translation performance. 

Table 1: Models performance results on different test datasets in the experiment 

Corpus type Model 
BLEU values of the model on different datasets (%) 

NMTEN→Zh NMTZh→EN 
NIST04 NIST08 NIST12 NIST04 NIST08 NIST12 

A 
ConvS2S 23.37 23.14 24.02 28.95 28.12 28.76 

Transformer 26.15 26.22 26.95 32.62 33.54 33.63 

B 
RNN+ reverse translation 25.02 25.16 26.08 31.71 30.36 33.54 

Unsupervised PBSMT 26.64 26.58 27.47 35.56 33.05 35.68 

C 
Dual machine translation 26.96 27.17 28.13 36.79 35.81 37.35 

Transformer+NMT 29.41 29.11 29.54 38.89 37.97 38.62 
 
III. A. 2) Analysis of Model Performance Changes in Translation Tasks 
Figure 3 illustrates how the performance of the proposed model varies with the number of iterations in the Chinese-to-English 
and English-to-Chinese translation tasks on the NIST2020 validation dataset. Figure 4 shows how the perplexity values of 
the generated corpora vary with the number of iterations in the Chinese-to-English and English-to-Chinese translation tasks 
on the NIST2022 test dataset. Whether it is BLEU or the perplexity value of the generated corpus, both reach a relatively 
stable state after the second iteration of the model. After 8 iterations, the English-to-Chinese translation accuracy of the model 
reaches 38.91%, and the perplexity value of the generated Chinese corpus decreases to 75.82. The Chinese-to-English 
translation accuracy reached 29.79%, and the generated English corpus perplexity value decreased to 80.13%. Achieving high 
accuracy and a significant reduction in generated corpus perplexity values after only 8 iterations suggests that the model 
architecture is effective and can be further tested for performance and specific translation tasks. 

 

Figure 3: The variation of model performance with the number of iterations 
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Figure 4: Generate expected confusion degree varying with number of iterations 

III. B. Model Performance Evaluation 
III. B. 1) Comparison of BLEU scores for different models 
After initially assessing the effectiveness of the Transformer+NMT cross-language English translation model architecture 
described in this paper, we selected similar cross-language translation models—XLM, mBERT, and SeamlessM4T—as 
comparison models and trained them on large datasets. Figure 5 shows the specific changes in BLEU scores for each model 
as the number of epochs increases. After 934 iterations, the BLEU score of the model in this paper reached a stable 97.62%. 
After 965 iterations, the XLM model reached a stable 67.25%. The mBERT model's BLEU score stabilized at 72.31% after 
960 iterations. The SeamlessM4T model's BLEU score stabilized around 77.57% after 912 iterations. The proposed model's 
final BLEU score exceeded 95%, demonstrating very high translation accuracy and significantly outperforming the comparison 
models. This validates the advantages of the deep reinforcement system and the context-aware thematic perception module. 

 

Figure 5: BLEU value of the model varies with epochs 

III. B. 2) Module Performance Testing and Results Analysis 
Validate the effectiveness of the model architecture in this paper on a module-by-module basis. The cross-language English 
translation model of the reinforcement learning-based NMT system plays a crucial role in predicting the target sentence. 
Accuracy is the percentage of correctly predicted target sentences out of the total number of samples. While accuracy can 
assess overall correctness, it is not an ideal metric for evaluating results in cases of sample imbalance. Definition and 
understanding of the F1 score: The F1 score is defined based on each category and encompasses two key concepts: precision 
(P) and recall (R). Accuracy refers to the probability that a sample predicted as positive is actually positive. Recall refers to 
the probability that a sample that is actually positive is predicted as positive. Figure 6 shows the changes in F1 score and 
accuracy of the model containing only the NMT system as the training epoch increases. The F1 score reaches its peak of 97.87% 
at 953 iterations, while accuracy peaks at 80.92% at 976 iterations. Both the F1 score and accuracy of the NMT system model 
using reinforcement learning exceed 80%, indicating that the prediction of target sentences is effective, thereby validating the 
application effectiveness of the NMT system. 
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Figure 6: F1 value and Accuracy vary with the training epoch 

Figure 7 shows the specific changes in the F1 score and accuracy of the proposed model as the number of iterations increases, 
after incorporating context quality assessment. After introducing the context quality assessment module, the F1 score of the 
proposed model ranged from a minimum of 90.43% to a maximum of 99.87%, and stabilized after 316 iterations. The accuracy 
stabilized at 90.74% after 815 iterations. Overall, the context-aware architecture based on deep reinforcement learning 
effectively handles sample training and cross-language English translation. 

 

Figure 7: F1 value and Accuracy of article model vary with number of iterations 

III. C. Model Translation Task Evaluation Results 
III. C. 1) Evaluation results for different translation tasks 
The model's actual cross-language English translation performance was evaluated through Chinese-to-English and German-
to-English translation tasks. After completing model training, the top 30,000 high-frequency words from the bilingual corpus 
were selected as the vocabulary list, with a maximum sentence length of 60 words for the training corpus. Multiple models 
were selected as comparison models to compare translation results. Table 2 shows the BLEU evaluation results for the 
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Chinese-to-English translation task. Table 3 shows the BLEU evaluation results for the German-to-English translation task. 
In both the Chinese-to-English and German-to-English translation tasks, the BLEU scores of the proposed model exceeded 
90%, with a maximum of 94.18%. The average scores were 90.67% and 93.08%, respectively. This demonstrates that the 
proposed model achieves high translation accuracy in actual cross-language English translation tasks. 

Table 2: BLEU evaluation results for Zh-EN translation tasks 

Zh-EN 
BLEU (%) 

NIST04 NIST06 NIST08 NIST010 NIST012 AVG 
Pbsmt 76.37 85.28 84.24 79.81 77.81 80.45 

GlobalAtt 80.92 88.95 88.51 82.67 80.76 84.36 
Sennrich-deponly 80.19 89.51 87.28 83.15 81.24 84.35 

LocalAtt 81.25 89.35 88.84 82.93 81.13 84.84 
FlexibleAtt 80.98 89.37 88.67 83.02 80.99 84.47 
SDRNMT 81.56 88.23 89.09 83.95 81.92 85.01 

Transformer+NMT 90.35 90.16 91.65 90.24 90.94 90.67 

Table 3: BLEU evaluation results for DE-EN translation tasks 

DE-EN 
BLEU (%) 

NIST04 NIST06 NIST08 NIST010 NIST012 AVG 
Pbsmt 79.82 89.13 86.18 81.07 79.74 83.04 

GlobalAtt 84.37 92.97 90.45 83.93 82.69 87.06 
Sennrich-deponly 83.64 93.53 89.22 84.42 83.17 86.91 

LocalAtt 84.17 93.36 90.78 84.19 83.06 87.01 
FlexibleAtt 84.43 93.39 90.61 84.28 82.92 87.02 
SDRNMT 85.01 92.25 91.03 85.21 83.85 87.39 

Transformer+NMT 93.28 94.18 93.59 91.25 92.89 93.08 
 
III. C. 2) Visualization of sentence translation based on implicit topic representation 
Figure 8 illustrates the process of the Chinese-to-English translation task. The original Chinese text on the vertical axis is 
“Today is Monday, and we are testing the performance of a cross-language English translation model.” During the Chinese-
to-English translation of this sentence, it can be observed that the model calculates the reward and penalty function values at 
the word level to determine the final target English sentence. For example, in the word “today,” the reward function value for 
‘Taday’ is the highest at 0.4, exceeding the reward values of other translated words. Therefore, this word is translated as 
“Taday,” and the translation process continues sequentially for the next word until the target sentence is output. 

 

Figure 8: The process of Chinese-English translation tasks 
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IV. Conclusion 
This paper utilizes the Transformer cross-language basic structure and a reinforcement learning-based NMT system to 
construct a cross-language English translation model and evaluate its translation performance. The model's BLEU score 
reached a stable value of 97.62% after 934 iterations, outperforming the other three comparison models. The F1 score ranged 
from [90.43, 99.87]%, with the highest accuracy reaching 90.74%. The BLEU score exceeds 90% in various English translation 
tasks, indicating good translation performance. Considering that this paper only tested two actual English translation tasks, to 
fully validate the translation performance of the designed model, future studies could set up more English translation tasks in 
different languages to verify the reliability of the results presented in this paper. 
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