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Abstract To achieve path planning for dual-robot collaboration in forestry robotics, this paper uses visual imaging principles 
and image processing methods to locate and segment tree images. Then, a kinematic model of the forestry robot is constructed 
and solved. The Shoal Optimization Algorithm (SHO) and Informed-RRT* algorithm are combined to propose the SHO-
Informed-RRT* algorithm for path planning in dual-robot collaboration in forestry robotics. Through simulation experiments, 
it is found that compared with other methods, the proposed SHO-Informed-RRT* algorithm performs best in terms of path 
planning time, planning speed, path length, average number of sampling points, and number of path nodes. After adopting the 
SHO-Informed-RRT* algorithm, the mechanical arm of the forestry robot achieves the optimal set target, and the average 
movement time of the mechanical arm is the shortest. 
 
Index Terms image processing, path planning, SHO-Informed-RRT* algorithm, joint motion 

I. Introduction 
Forestry operations refer to the use of tools and methods to interact with forests in order to obtain forest products, serving as 
a crucial means for humans to access forest resources [1]. Given China's vast forest areas, the forestry economy has become 
an important component of the national economy. However, with societal development and changes in economic structure, 
the labor force has significantly decreased, resulting in a scarcity of workers engaged in forestry [2], [3]. Additionally, forest 
work environments are harsh and labor-intensive, making it difficult for manual labor to efficiently complete related tasks [4], 
[5]. Robots can effectively address these issues by replacing time-consuming and labor-intensive manual labor with 
mechanized and automated robots, thereby reducing labor costs and ensuring the safety of forestry workers [6]-[8]. 
Furthermore, the development of intelligent forestry robots holds even greater significance for promoting forestry 
modernization [9]. 

Traditional forestry machinery faces performance limitations in complex forest environments and can no longer meet 
operational requirements. Furthermore, rising labor costs have led to increasing forestry operation costs in recent years [10]-
[12]. Therefore, research on dual-robot collaboration forestry manipulators is a key means to enhance forestry operation 
quality and efficiency. As a highly integrated mechatronic system, the operation planning of forestry robotic arms is a critical 
step in the operations of fruit-picking robots and industrial robots, enabling improvements in operational efficiency and safety 
[13]-[16]. Considering the many uncertainties in the system, intelligent planning of the robotic arm's movement trajectories 
is necessary for different environments and conditions [17], [18]. 

Currently, with the development of robotics technology, forestry robots have been widely researched and applied in almost 
all forestry operation fields. However, due to the complexity of forestry operation scenarios and the diverse working forms in 
forestry environments, researchers have also conducted studies on forestry robots tailored to different application scenarios. 
Reference [19] designed a multi-arm collaborative control strategy for apple harvesting, utilizing a Markov game framework 
to optimize the target harvesting sequence of the working arms, thereby enhancing the harvesting efficiency of forestry robots. 
Literature [20] developed a telescopic arm intelligent optimization system for large-scale fruit tree harvesting operations. It 
utilizes a hybrid neural-fuzzy application interface to optimize the kinematic and dynamic behavior knowledge of the robotic 
arm in the workspace, thereby obtaining the optimal action path for the robotic arm. Literature [21] proposes a dynamic 
planning method for multi-arm picking robots that integrates long short-term memory (LSTM) networks and proximal policy 
optimization (PPO), enabling the robotic arms to exhibit better adaptability, fault tolerance, and collaborative execution 
efficiency in complex fruit tree environments. Literature [22] introduces a system that uses a legged harvester to autonomously 
perform precise harvesting tasks. It relies on path planning algorithms and sensor data to plan the harvester's movement and 
gripping actions, enabling it to maintain good tree-gripping performance in rugged terrain and complex environments. 
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Literature [23] indicates that collision-free collaboration, task sequence optimization, and dynamic re-planning are 
fundamental requirements for multi-arm collaborative work in forestry robots. To this end, multi-arm task planning is modeled 
as a Markov game, and deep reinforcement learning is introduced to enhance the accuracy of robotic arm action decisions. 
Reference [24] proposes a rubber intelligent tapping device based on a mobile robot platform. It uses the Gauss-Newton 
method to fit tree point cloud data to plan the robot's action path and employs the extended Kalman filter (EKF) algorithm for 
accurate robot localization to meet the requirements of the robotic arm's rubber collection task. Reference [25] improves 
forestry operation robots using an IoT-based smart forest and navigation system, enabling them to perform various tasks in 
forest environments more efficiently and sustainably. It is evident that existing intelligent planning methods for forestry robotic 
arms heavily rely on visual sensors to scan and analyze the working environment of forestry operations. Therefore, researching 
and designing more optimized and intelligent tree segmentation algorithms to obtain the complete three-dimensional structure 
of the forest is of great significance for multi-robotic arm collaborative path planning. 

This paper first uses visual imaging and image processing methods to achieve high-precision localization and image 
segmentation of trees. Then, a kinematic model is established for the dual forestry robots, and forward and inverse kinematics 
are solved. After preliminary path planning for the forestry robots, a collision detection model is established. By integrating 
the Stable Hippocampus Optimization (SHO) algorithm and the Informed-RRT* algorithm, the SHO-Informed-RRT* 
algorithm is constructed to further enhance the path planning efficiency of dual-robot collaboration in forestry operations. To 
test the effectiveness of the proposed SHO-Informed-RRT* algorithm, simulation experiments are conducted. The proposed 
algorithm is compared with other planning methods in terms of path and joint aspects through simulation tests, evaluating the 
advantages and disadvantages of each method based on planning time, path length, and node count. 

II. Visual imaging and image processing 
II. A. Principles of Visual Imaging 
Coordinate transformation can effectively convert observed three-dimensional object information into more precise three-
dimensional coordinates, enabling the visual system to identify objects with greater accuracy. Assuming a point P is located 
in a specific space, its coordinates can be represented as P(X, Y, Z). A camera coordinate system can be established with the 
camera's center point as the origin, where the X and Y coordinate axes are parallel to the sides of the image, and the Z axis is 
perpendicular to the image, pointing directly toward the front of the lens. The spatial point P is represented as ( , , )c c cP X Y Z  

By specifying a reference coordinate system, the position of an object can be transformed from the world coordinate system 
to the camera coordinate system, including rotations and translations of the coordinate system. The transformed coordinates 
are shown in Equation (1): 
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The above equation can be simplified to the following equation (2): 
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, where R  is the rotation matrix and T  is the translation matrix, both of 

which are external parameters of the camera and are unrelated to each other. 
Based on the coordinates of the image center, establish an image coordinate system xoy, in which the x and y coordinate 

axes are parallel to the length and width directions of the image. A perspective projection image is obtained using the pinhole 
imaging principle. In this image coordinate system, the projection of point ( , , )c c cP X Y Z  is ( , )P x y . 

According to the similarity triangle theorem, equation (3) can be derived:   

 ,c c

c c

X Yx y

Z f Z f
   (3) 

Write the above equation in matrix form as shown in (4): 



Intelligent path planning technology for dual-machine collaborative forestry manipulators based on high-precision tree segmentation 

85 

 
0 0 0

0 0 0

1 0 0 1 0
1

c

c
c

c

X
x f

Y
Z y f

Z

 
     
          
        

 

 (4) 

Images captured by a camera exist in the form of pixels, and their pixel coordinate system uov needs to be converted to the 
image coordinate system xoy. The origin coordinates can be represented by 0 0( , )u v  . 

The conversion matrix between the pixel coordinate system and the image coordinate system is shown in formula (5):   
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In this context, ,x yd d  represent the physical dimensions of the pixel, and 0u  and 0v  are the pixel coordinates. 
In summary, the conversion relationship between the world coordinate system and the image coordinate system is shown in 

Equation (6): 
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It can be simplified as follows: 1 2
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, where the key variables are shown in equation (7): 
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In this context, ,u v  represent arbitrary points in the pixel coordinate system, while 0 0,u v  indicate the pixel coordinates 
of the center point of the image, cz  represents the distance from the camera to the object, and 1M  is the camera's internal 
parameter matrix, where f  denotes the focal length of the lens, which is the vertical distance from the lens to the image 
plane, ,dx dy  respectively indicate the length and width of a single pixel point in the image coordinate system; 2M  is the 
external parameter matrix, which assists the system in more conveniently measuring the distance between objects. Generally, 
during the calculation process, the world coordinate system and the camera coordinate system are aligned to calculate the 
distance between objects. If they are the same, the result shown in Equation (8) can be obtained: 
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II. B. Image processing methods 
II. B. 1) Simple image processing 
(1) Image grayscaling 

Using grayscale images instead of traditional color images can significantly speed up the image processing process, thereby 
better completing recognition and positioning tasks. 
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(2) Image enhancement 
Through image enhancement technology, the grayscale values of images can be changed to improve image contrast. This 

technology can effectively enhance image clarity, making the target in the image more prominent and easier to extract features 
from. 

 
II. B. 2) Image Filter Operator Analysis 
(1) Mean filter 

The mean filter has good linear characteristics [26] and can effectively extract information from data using the neighborhood 
averaging method. When a pixel is affected by noise, its original gray value will deviate significantly from the surrounding 
values. By using their values as substitute values, a “smoothed” effect can be obtained. 

The pixel (x, y) to be processed is mapped to a specific template. By calculating the template, the average value of each 
pixel in the entire image can be obtained. The calculated value replaces the grayscale value of each pixel. The grayscale value 
of pixel (x, y) can be calculated using the method in equation (9):   
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(2) Gaussian filter 
The design concept of the Gaussian filter is to construct an accurate and reliable mathematical model by applying the 

Gaussian function [27]. After processing with this model, image data can be effectively converted into low-energy information, 
thereby effectively suppressing noise and ultimately achieving effective denoising of image data. During the filtering process, 
features such as image edges and corners become blurred, which leads to energy loss. 

The Gaussian function is shown in Equation (10): 
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As the variance   increases, the Gaussian kernel window of the discrete filter also becomes larger, covering a wider range. 
By using a MATLAB program to create a 3×3 discrete Gaussian kernel, efficient calculations can be achieved. The function 
is shown in equation (11) below: 

 ( ,3,1)filter fespecial gaussian  (11) 

The Gaussian matrix is shown in equation (12) below: 
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(3) Median filtering 
Median filters aim to obtain optimal image quality by comparing the gray values of pixels surrounding each pixel point to 

determine the pixel closest to the center value. By using median filtering, noise can be effectively suppressed, thereby avoiding 
the problem of blurred edge contours. The basic process is as follows: 

The two-dimensional median filter output is given by formula (13): 

 ( , ) { ( , 1), ,1 }g x y med f x k y k W     (13) 

( , )f x y  represents the original image, ( , )g x y  represents the processed image, and l and k are used to indicate the 
sampling window size. 

 
II. B. 3) Image segmentation technology 
(1) Edge detection method—Canny edge detection method [28] 

The specific steps of the classic Canny operator edge detection are as follows:   
Step 1: Use a two-dimensional Gaussian plane to achieve surface flatness. Here, assume that ( , )f x y  is the input image, 
( , )G x y  represents the Gaussian function, and the smoothed image is represented by ( , )sf x y :   
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Step 2: Gradient solution. By using the 2×2 neighborhood finite difference mean to calculate the gradient, effective edge 
detection can be performed on the smoothed image ( , )sf x y , and the partial derivatives of x and y can be calculated using 
this method, as shown in formula (15): 
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By applying the calculation technique of the second norm, it can be seen that there is a close relationship between the 
magnitude M of the gradient and its direction, as shown in formula (16): 
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Step 3: Suppress non-maximum values. After suppression, candidate edge points can be recorded. 
Step 4: Adjust the high and low thresholds. By adjusting the thresholds, the discontinuous regions in the image can be 

stitched together to ensure edge continuity. 
(2) Threshold segmentation method - maximum interclass variance method   
By setting the threshold of the grayscale histogram, the image can be easily segmented. When there is a significant difference 

in grayscale between the foreground and background in the image, threshold segmentation technology can effectively achieve 
the desired results. 

Through statistical analysis, it can be observed that variance is an important metric for measuring the differences between 
two categories of data. Using the maximum interclass variance method, an image can be divided into “background” and “object” 
regions. The segmentation threshold T is determined by calculating the grayscale value kt  of each pixel, thereby achieving 
effective image segmentation. If an image has dimensions of M N , its grayscale values can be divided into L levels, namely 
{0,1,2, , 1}L   respectively. in  denotes the number of pixels with grayscale level i , where [0, 1]i L  . It follows that 

1 2 3 1LMN n n n n      . The process is as follows:   
First: Histogram normalization as in equation (17):   
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Second: Set a threshold of ( )t i i , and divide the image into two categories, A and B, based on ( )t i . The probabilities of 
categories A and B appearing are shown in equation (18) below: 
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If A is a background with a grayscale level between 0 and N, then the value of BP  can be obtained by analyzing the 
elements in the histogram. This value reflects the probability of the background appearing. If B is a target, then the value of 

BP  is the probability of it appearing. 
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AW  and BW  represent the grayscale values of regions A and B, respectively, while 0w  is the average value of the entire 
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grayscale image. From the various formulas in (17) to (21), it is found that the size of the inter-class variance 2  is closely 
related to the segmentation threshold T, whose value range is L-1. Therefore, the grayscale value that maximizes the inter-
class variance can be obtained through enumeration. 

III. Forestry robot path planning 
III. A. Establishment of Kinematic Models 
The prototype platform system is realized through the collaborative operation of two Eft-ER20 six-degree-of-freedom 
forestry robots with identical model parameters for hub grinding. One robot holds the hub, while the other holds the grinding 
tool and follows the grinding trajectory points in real time. To describe the motion relationship between adjacent linkages, this 
paper adopts the improved D-H method to establish the coordinate systems of each linkage, as shown in Figure 1. Description 
as follows: The coordinate origin iO  is located at the intersection of the common perpendicular line ia  and the axis of joint 

iJ ; the iz  axis coincides with the axis of joint iJ , and its direction can be arbitrarily chosen; the ix  axis coincides with 
ia  and points toward the 1iJ   axis; the iy  axis is determined by the right-hand rule. 0 0 0( , , )x y z  is the world coordinate 

system, 10 10 10 0 0 0( , , ), ( , , )R R Rx y z x y z  are the base coordinate systems of the left and right robots, respectively, and the distance 
between the two robots is 2.5 m. 
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Figure 1: Double robot coordinate system 

III. B. Kinematic solution for dual robots 
III. B. 1) Solving for positive kinematics 
The forward kinematics problem involves solving for the pose of the end effector in the reference coordinate system, given 
the known motion angles of each motion axis and the link parameters. Let 1i

i T  be the transformation matrix of the link 
coordinate system { }i  relative to { 1}i  , then we have: 
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From equation (22), we obtain the general formula: 
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Among them, cos, sinc s  . 
Taking a gripping robot as an example, the kinematic solution is obtained as follows: 
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The kinematic equation is: 

 0 0 1 2 3 4 5
6 1 2 3 4 5 6T T T T T T T  (25) 

Substituting the variables of each joint into equation (24) yields the forward kinematics of the gripping robot. 
Let the world coordinate system be denoted by b . Then, 0

bT  is the transformation matrix of the gripping robot relative to 
the world coordinate system, and 7

bT  is the transformation matrix of the grinding robot relative to the world coordinate 
system. By analyzing the relationship between the left and right robot base coordinate systems and the world coordinate system, 
the transformation matrix from the base coordinate system to the world coordinate system can be obtained, i.e.: 
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   
   

 (26) 

When performing grinding operations, the robot needs to determine the pose of the wheel hub in its own base coordinate 
system, which requires further calculation of 1

0
bT   and 1

7
bT  . This allows the robot to determine the coordinates of the end-

effector in its own base coordinate system based on its pose in the world coordinate system, and then use inverse kinematics 
to calculate the angular values of each joint's motion. 

 
III. B. 2) Solving inverse kinematics 
The inverse kinematics problem involves determining the angle values of each joint when reaching the desired pose, given the 
known parameters of the linkages and the desired pose of the end effector relative to the reference coordinate system. This 
problem is primarily solved using geometric methods, inverse transformation methods, and analytical methods. The three axes 
of the Effort-ER20 intersect at a single point and have a vector closed solution, so this paper uses the inverse transformation 
method to solve the inverse kinematics problem: 

 0 1 2 3 4 5 6
0 1 2 3 4 5 6( )b b

e eT T T T T T T T T  (27) 

Let the position-orientation matrix of the gripping robot's end effector be: 



Intelligent path planning technology for dual-machine collaborative forestry manipulators based on high-precision tree segmentation 

90 

 

0

0
1

0

0 0 0 1

x x x x

y y y y

z z z z

n o a p

n o a p
P

n o a p

 
 
 
 
 
 

 (28) 

Then there are: 
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III. C. Basic Principles of Path Planning 
III. C. 1) Path Planning Definition 
This study defines path planning as follows: Let X R  be the state space for motion planning. Define the set obsX X  
as the obstacle space, and \free obsX X X  as the obstacle-free space, i.e., the free space. In the free space, start freeX X  is 
defined as the starting position, and goal freeX X  is defined as the target position. The motion planning problem is to find a 
collision-free path in the space X  that starts from the initial position start(0) X   and reaches the target position 

(1) goalX  , defined as the set [0,1] freeX  . 
Define ( )c   as a cost function that maps each collision-free path to a non-negative real number. The process of 

algorithmic gradual optimization is defined as: in an elliptical space with the major axis length as the initial path length, the 
process of iteratively updating the path with the lowest cost through the algorithm. Let the optimal path cost function be * , 
i.e.: 

 *
(0) , (1) ,

arg min ( )
[0,1], ( )

start goal

frees

X X
c

s X

 
 



         
 (30) 

III. C. 2) Collision Detection Model 
By performing collision detection on each joint, determine whether the robotic arm has collided with an obstacle. Simplify the 
spatial model using geometric enveloping methods: use a cylindrical envelope for the robotic arm's linkages, a spherical 
envelope for spherical obstacles in space, and an axial bounding box for rectangular obstacles. 

Collision detection between the robotic arm and spherical enveloped spatial obstacles can be simplified to calculating the 
distance between the centerline of the cylinder and the center of the obstacle sphere. 

Define the three-dimensional spatial coordinates of the spherical obstacle oM  as: 

 ( , , )o Mo Mo MoM X Y Z  (31) 

Define the three-dimensional coordinates of the perpendicular foot from the center line of the cylinder to the center of the 
obstacle ball as vM : 

 ( , , )v Mv Mv MvM X Y Z  (32) 

The distance between the robotic arm and the obstacle d  is: 

 2 2 2| | ( ) ( ) ( )v o Mv Mo Mv Mo Mv Mod M M X X Y Y Z Z        (33) 

When the sum of the radius of the spherical obstacle and the radius r  of the cylinder is greater than or equal to d , a 
collision is considered to have occurred; otherwise, no collision is considered to have occurred, expressed as: 

 
Collision

No collisio

,

n,
c o

c o

d r r

d r r

 
  

 (34) 

For axial bounding box collision detection, if segment A  of the robotic arm is outside the axial bounding box of the 
obstacle, no collision is considered to have occurred; otherwise, a collision is considered to have occurred. Depending on the 
specific circumstances of the obstacle, collision detection for the robotic arm's path planning is performed using formulas (31) 
to (34). 
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III. D. Hippocampus Optimization Algorithm 
The SHO algorithm is a heuristic optimization algorithm based on the behavior of seahorses in nature [29], which aims to 
solve various optimization problems. The SHO algorithm combines local search and global search strategies and has the 
advantages of stronger global search capabilities, high adaptability, high efficiency, and ease of adjustment. 
 
III. D. 1) Movement Behavior 
The SHO algorithm simulates two different movement patterns of the seahorse: one for global search and the other for local 
exploration, enabling flexible search of complex search spaces. In local exploration mode, the seahorse's movement toward 
the elite individual xtelite (the current population's optimal individual) is simulated using Levy flight, prompting the algorithm 
to cover different regions with early incremental probability during iteration, thereby helping to avoid local sparsity. 

The SHO local exploration position update formula is: 

 ( )[( ) ]l t t t t
i i elite i elitex x Levy x x xyz x     (35) 

In the equation, cosx   , siny   , and z   represent the three-dimensional components of the coordinates 
under spiral motion, which helps update the search position of the hippocampus; vu e    represents the length of the 
radius defined by the logarithmic spiral constant u   and v ;   is a random value in the range [0, 2 ] rad; Levy(  ) is the 
Levy flight distribution function;   is a random number in the range [0, 2]; [0, ]; [1, 1]t n l n   . 

In global search mode, random movement helps to better explore the search space. 
The SHO global search position update formula is: 

 eliterand(0,1) ( )l t t t
i i t i tx x l x x     (36) 

In the equation, l  is a constant coefficient; l  is the random walk coefficient of Brownian motion, which is essentially 
a random value that follows a standard normal distribution. 

 
III. D. 2) Predatory behavior 
Predatory behavior plays a key role in the SHO algorithm, adjusting the algorithm's behavior by simulating the success or 
failure of predation. The mathematical expression for predatory behavior is: 

 
1

2 2
1 1

[ (0,1) ] (1 ) , 0.1

(1 )[ (0,1)( )] ,other

t t
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i t
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x rand x x r
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x rand x x

 
 

     
  

 (37) 

In the equation, 1
ix  represents the new position of the seahorse after performing a movement behavior, i.e., first completing 

the movement described in Section 2-1, then using the newly obtained position to perform predation, resulting in the new 
position 2

ix ; 2r  is a random number in the range [0, 1];   decreases linearly with the number of iterations to adjust the 
movement step length of the seahorse when hunting prey, i.e.: 

 
2

(1 )
t

T
t

T
    (38) 

Among them, T  is the maximum number of iterations. 
 

III. D. 3) Proliferation Behavior 
The proliferation behavior selected by SHO simulates natural processes. Different movement patterns approximately follow a 
normal distribution. Taking 0ir   as the boundary point, the individuals with the best fitness are selected as parents to 
generate new individuals, and the best individual l

elitex  is selected. This helps maintain the diversity of the search and improves 
the performance of the improvement. 
 
III. E. Informed-RRT* algorithm integrated with SHO 
By integrating the SHO algorithm and the Informed-RRT* algorithm [30], it is expected that a global optimal solution can be 
found more quickly and stably during the path planning process, thereby further improving path planning efficiency. 
 
III. E. 1) Optimizing Sampling Strategies 
Traditional path planning algorithms typically generate sample points randomly throughout the entire environment, but this 
often results in wasted time. The improved sampling strategy is more oriented toward the target direction. In the early stages 
of sampling, the direction between the target point and the initial point is given special consideration, which helps to generate 
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sample points closer to the target point throughout the search process, thereby narrowing the search range. Additionally, a 
trade-off mechanism is employed to limit the maximum distance of sampling points in the direction toward the target, 
preventing abrupt jumps and balancing the breadth and depth of the search. Simultaneously, randomness is increased within a 
certain range to enhance path diversity, enabling better adaptation to complex environmental applications. 
 
III. E. 2) Obstacle avoidance design 
In path planning, obstacle avoidance design is critical to ensuring the safe, efficient, and reliable operation of the system. The 
algorithm in this paper optimizes and improves the strategy for handling obstacles encountered, thereby enhancing the 
efficiency of path planning. 

First, node information is introduced to enable the algorithm to capture obstacles around the robot in real time. This allows 
nodes to continuously detect collision risks during movement and perform real-time collision detection during path planning. 
Although the sampling range is restricted in the initial stage to be closer to the target point, obstacles are still inevitably 
encountered during operation. The new node newx  is generated from the starting node startx  to the target node goalx . First, 
find the node nearestx  closest to randx , then extend a certain distance cl  along the direction from randx  to nearestx  to generate 
the new node, Finally, nearestx  and newx  are connected to form a straight line L . To explore obstacles in the environment, 
mathematical formulas and geometric calculation methods can be used to handle encountered obstacle segments. 

Second, this paper employs a method of randomly perturbing node positions for collision detection, as shown in Figure 2. 
If a collision is detected, the system first attempts to generate a new node position by randomly perturbing the current position 
to avoid the collision. Simultaneously, the system repeatedly attempts to generate new node positions until a position that does 
not collide with the obstacle is found or the predetermined iteration count is reached, at which point the search for nodes is 
restarted. 

randx

nearx
 

Figure 2: Collision detection 

The probability density function of the normal distribution of the random disturbance term is: 

 
2

2

( )

2
1

( ; , )
2

x

f x e

 

 



  (39) 

In this case,   is the expected value of the normal distribution;   is the standard deviation of the normal distribution. 
 

III. E. 3) Reference to the SHO algorithm 
In the Informed-RRT* algorithm, the performance of path planning is further optimized by incorporating the principles of the 
SHO algorithm. The traditional Informed-RRT* algorithm requires the continuous generation and connection of nodes, but in 
high-dimensional spaces or complex environments, this leads to a rapid increase in computational complexity and may result 
in paths with significant randomness. To overcome these challenges, the predatory behavior of the SHO algorithm is introduced, 
making path planning more efficient and reliable. 

By incorporating predator nodes from the SHO algorithm into the Informed-RRT* algorithm, these predator nodes act as 
the most fit individuals in the population, naturally guiding other predator nodes toward the target point. Thus, the introduction 
of predator nodes enhances the directionality of path exploration, making paths more likely to reach the target point, thereby 
reducing the search space and improving path planning efficiency. 

Second, predator nodes can respond more flexibly when encountering obstacles, promptly adjusting paths to proactively 
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avoid collisions, thereby reducing potential risks. This adaptability and flexibility enable the algorithm to better adapt to 
complex environments, including crowded environments and sudden events, without relying on predefined paths. 

In the improved algorithm proposed in this paper, predator nodes are continuously updated, similar to the proliferation 
behavior in the SHO algorithm. This update mechanism enables the algorithm to continuously optimize paths, especially when 
encountering insurmountable obstacles upon reaching the target point. Predator nodes can act as global search agents to help 
find alternative paths. Therefore, the integration of the SHO algorithm with the Informed-RRT* algorithm not only improves 
path planning efficiency and reliability but also enhances the algorithm's ability to handle complex situations, enabling it to 
better address various challenges. 

IV. Analysis of simulation results 
IV. A. Path simulation experiment 
To validate the effectiveness and feasibility of the improved Informed-RRT* algorithm, simulation experiments were 
conducted on the Matlab platform for both the improved and original Informed-RRT* algorithms, as well as the related RRT 
algorithm. The simulation experiment platform was a DELL Inspiron 5577, with Matlab version R2018b. 

First, simulation experiments were conducted in a three-dimensional space, with two types of maps established. One was a 
simple environment, where there were no obstacles on the connection line between the starting point and the endpoint or in 
the space, as shown in Figure 3. The other was a complex environment, as shown in Figure 4, where (a) to (c) represent the 
path planning effects of the RRT* algorithm, the Informed-RRT* algorithm, and the SHO-Informed-RRT* algorithm, 
respectively. The improved algorithms were compared with the RRT* algorithm and the Informed-RRT* algorithm. The 
average path length, average search time, average number of path sampling points, and average number of path nodes for each 
set of experiments were compared, with the results shown in Table 1. The spatial setting is 225×225×225, with obstacle regions 
randomly set as spherical areas. Paths are represented by thick solid lines. The starting point coordinates are set to (225, 0, 0), 
and the target point coordinates are (0, 225, 225). The expansion step size is 10, the threshold is set to 10, and the maximum 
iteration count is 10,000. Each experiment was conducted 50 times, and the average value was calculated for comparison to 
reduce the impact of randomness on the experimental results. 

Table 1 shows that, under this map condition, the improved algorithm takes the least time, has the fastest path planning 
speed, and produces the shortest path length compared to other algorithms. It also has the fewest average sampling points and 
path nodes. In an obstacle-free environment or when the line connecting the starting point and the destination point is obstacle-
free, unnecessary searches are avoided. Analyzing the results in Table 1, it can be concluded that compared to other algorithms, 
the improved algorithm (SHO-Informed-RRT*) spends the least amount of time on path planning, has the fastest speed, the 
shortest planned path length, and the fewest average sampling points and path nodes. The improved algorithm (SHO-
Informed-RRT*) reduces the average path search time by 80.45% and 94.04%, the average path length by 44.64% and 16.26%, 
the average number of sampling points by 98.69% and 98.95%, and the average number of path points by 93.12% and 84.27%, 
respectively. 

The results show that the improved algorithm reduces the number of path nodes while obtaining shorter paths. Compared 
with other algorithms, the improved algorithm has shorter search times and smoother paths, proving the superiority of the 
improved algorithm. 

   

(a) RRT* algorithm (b) Informed-RRT* algorithm (c) SHO-Informed-RRT* algorithm 

Figure 3: Path search diagram of three algorithms in map 1 
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(a) RRT* algorithm (b) Informed-RRT* algorithm (c) SHO-Informed-RRT* algorithm 

Figure 4: Path search diagram of three algorithms in map 2 

Table 1: DH parameters of the manipulator 

Map Algorithm Search time/s Path length Sampling point number Path node number 

Map 1 
RRT* 3.516528 593.5623 1824.53 62.31 

Informed-RRT* 10.156567 405.651 2487.24 23.16 
SHO-Informed-RRT* 0.002035 325.749 4 6 

Map 2 
RRT* 3.315597 598.168 1854.29 58.12 

Informed-RRT* 10.875264 395.486 2314.24 25.43 
SHO-Informed-RRT* 0.648342 331.172 24.35 4 

 
Then, to demonstrate the effectiveness of the improved algorithm in this paper, a model of the robotic arm was created using 

the Matlab software platform. In three-dimensional space, obstacles were placed at the coordinates (120, 40, 60), (150, -25, 
75), and (90, 150, 80), with each obstacle represented by a sphere with a radius of 40. The results show that the robotic arm 
can effectively avoid obstacles in the space and obtain a collision-free path under the improved algorithm, making it an 
effective path planning algorithm. 

This paper addresses the issue of path planning using the RRT* algorithm by proposing an improved algorithm. It employs 
a direct connection method to determine whether the starting point and target point can be reached directly, thereby avoiding 
unnecessary searches when there are no obstacles between the starting point and target point. It then uses a target bias strategy 
to enhance path search speed and finally simplifies the obtained path by removing redundant points. The results show that the 
improved algorithm enhances the convergence speed of the algorithm, effectively eliminates redundant nodes in the path, and 
generates shorter and smoother paths. Therefore, the improved algorithm proposed in this paper is effective and feasible. 

 
IV. B. Joint simulation experiment 
By simulating the motion time of each joint of the forestry robot before and after improving the Hippocampus Optimization 
Algorithm (referred to as the algorithm used), the angle change curves, angular velocity change curves, and angular 
acceleration change curves of each joint of the robotic arm before and after improving the algorithm used are shown in Figures 
5 to 7, respectively. 

As shown in Figure 5, the differences in the angular changes of the robot arm's joints before and after the improvement of 
the algorithm are relatively small. As shown in Figure 6, the differences in the angular velocity changes of the robot arm's 
joints before and after the improvement of the algorithm are significant, particularly for joint D, which exhibits a notable 
increase in maximum angular velocity after the improvement. After the algorithm was improved, the maximum values of the 
angular velocity of each joint of the robotic arm are all within the first interpolation curve, but all are less than Vmax. As 
shown in Figure 7, after the algorithm was improved, the angular acceleration curves of each joint of the robotic arm are more 
compact than before the improvement, and the increase in the amplitude of angular acceleration change has significantly 
improved time efficiency. 

Analysis shows that after adopting the SHO-Informed-RRT* algorithm, the angle change curves, angular velocity change 
curves, and angular acceleration change curves of each joint of the robotic arm are relatively smooth, and the starting and 
ending points of the angular velocity change curves and angular acceleration change curves are both zero, meeting the actual 
motion requirements and set conditions of the robotic arm. During motion, the angular changes of each joint of the robotic 
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arm are small, while the changes in angular velocity and angular acceleration are significant, achieving the optimal design goal 
for robotic arm motion time set in this paper. 

  
(a) Angle curve before improvement (b) Angle curve after improvement 

Figure 5: Angle curve before and after algorithm improvement 

  

(a) Motion angular velocity curve before improvement (b) Motion angular velocity curve after improvement 

Figure 6: Motion angular velocity curve before and after algorithm improvement 
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(a) Motion angle acceleration curve before improvement (b) Motion angle acceleration curve after improvement 

Figure 7: Motion angle acceleration curve before and after algorithm improvement 

To further demonstrate the superiority of the proposed SHO-Informed-RRT* algorithm, it is compared with the traditional 
RRT* algorithm and the Informed-RRT* algorithm. The algorithm parameters are as follows: maximum iteration count of 
100, maximum mutation probability of 0.1, minimum mutation probability of 0.05, maximum crossover probability of 0.8, 
minimum crossover probability of 0.4, and allowed error rate of 0.05. Four comparative experiments (Experiments 1–4) were 
conducted to observe and statistically analyze the total motion time of the robotic arm when trajectory planning was performed 
using the traditional RRT* algorithm, the Informed-RRT* algorithm, and the SHO-Informed-RRT* algorithm. The results 
of the four comparative experiments are shown in Table 2. 

As shown in Table 2, the results of the four comparative experiments are consistent, with no significant differences. In terms 
of the average overall motion time of the robotic arm, the SHO-Informed-RRT* algorithm reduces the time by 2.02089 
seconds compared to the Informed-RRT* algorithm and by 3.07432 seconds compared to the traditional RRT* algorithm. 

The comparison experiment results indicate that the proposed SHO-Informed-RRT* algorithm outperforms other 
algorithms in terms of convergence speed and the overall motion time of the robot arm along the planned trajectory, effectively 
achieving optimization of robot arm trajectory planning. 

Table 2: Experiment results 

Algorithm 
The overall movement time of the mechanical arm 

1 2 3 4 Mean 
RRT* 6.18526 6.20312 5.81425 6.22748 6.10753 

Informed-RRT* 4.52683 4.92458 5.21623 5.54876 5.05410 
SHO-Informed-RRT* 3.04626 3.06748 3.01896 3.00013 3.03321 

V. Conclusion 
The paper completes image segmentation of trees based on visual imaging and image processing technologies, designs and 
solves the kinematic model of forestry robots, and optimizes the Informed-RRT* algorithm using the Hippocampus 
Optimization Algorithm to complete path planning for the mechanical operations of forestry robots. 

(1) Compared with other algorithms, the path planning time of the SHO-Informed-RRT* algorithm in this paper is the 
shortest, the planning speed is the fastest, the planning length is the shortest, and the average number of sampling points and 
path nodes is the smallest. The SHO-Informed-RRT* algorithm reduces the average path search time, average path length, 
average number of sampling points, and average number of path nodes on complex maps by 80.45%, 44.64%, 98.69%, and 
93.12%, respectively, compared to the RRT* algorithm, and by 94.04%, 16.26%, 98.95%, and 84.27%, respectively, compared 
to the Informed-RRT* algorithm. 

(2) After adopting the SHO-Informed-RRT* algorithm, the angular changes of the joints of the forestry robot's manipulator 
were smaller, while the changes in angular velocity and angular acceleration were larger, achieving the optimal manipulator 
motion time target set in this paper. The average manipulator motion time was reduced by 3.07432s and 2.02089s compared 
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to the RRT* algorithm and Informed-RRT* algorithm, respectively. 
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