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Abstract Aiming at the problem of high false detection rate of PCB defect detection,an improved YOLOv8-C2f_DBB-
SPFF_LSKA (YOLOv8-CDSL) is used to detect defects of the PCB. The diverse branch block (DBB) is used to improve the 
faster version of CSP bottle-neck with two convolutions (C2f) module in the YOLOv8 backbone network. The large separable 
kernel attention (LSKA) mechanism is also added to the SPPF module of the YOLOv8 network. The C2F_DBB module can 
significantly improve the model's ability to identify small-scale PCB defects, and greatly enhance the model's performance in 
comprehensive feature extraction. Thus significantly improving the overall accuracy of the model. The SPPF_LSKA module 
can reduce the computing power consumption of model training. Consequently, it significantly enhances the detection 
capability of the improved YOLOv8-CDSL network. The effectiveness of the improved scheme was verified by ablation 
experiments. At the same time, it is verified by comparative experiments that the improved YOLOv8-CDSL network has the 
highest detection accuracy of 99.13% for six common surface defects of PCB. 
 
Index Terms YOLOv8, C2f_DBB, SPPF_LSKA, Defect detection, Printed circuit board 

I. Introduction 
With the rapid advancement of China's modern electronics industry and emerging technologies, printed circuit board (PCB) 
serves as the essential hardware support for wiring connection and signal transmission in various electronic products as the 
carrier of diverse electronic components [1]. The intricate production process and complex manufacturing environment of 
PCB can easily lead to various imperfections during manufacturing [2], which in turn can impact the performance of the PCB. 
High quality detection of PCB surface defects is a crucial task in the manufacturing process.  

At present, the common defects detection methods for printed circuit boards include functional testing [3], online testing 
[4], manual eye inspection [5], and visual inspection technology [6]. In the application of online testing and functional testing, 
it is necessary to design complex test circuits and test schemes, and the test circuits and schemes of different PCB products 
are also different [7]. Some defects are undetectable. The traditional manual eye inspection method has some problems, such 
as low efficiency, high cost, low accuracy, and strong subjective factors [8]. Which is gradually replaced by machine vision 
technology [9]. Machine vision inspection technology relies on artificial intelligence algorithms and utilizes image processing 
and pattern recognition to achieve rapid automatic identification of PCB defects. It is characterized by its cost-effectiveness, 
high efficiency, and strong robustness [10]. Wu et al. [11] developed an automatic PCB visual inspection system based on 
pixel processing, which directly subtracts template images from the detected image to locate defects in the PCB, thus greatly 
reducing the inspection processing time. Liu et al. [12] proposed a key technology for PCB defect online detection based on 
machine vision to detect, locate, and identify simple geometric defects such as short circuit, open circuit, and burr that may 
occur on PCB production lines. Although there are many PCB defect detection methods, each method has inherent limitations 
and shortcomings, and the selection of detection methods must be consistent with the specific requirements and situations.  

Several studies [13], [14] have implemented various deep learning models to detect PCB surface defects. Zhang et al. [15] 
proposed a method for PCB defect detection based on a convolution neural network (CNN) model. They utilized a deep pre-
trained convolutional neural network to extract discriminant features of defects, which demonstrated sufficient ability to 
distinguish between different types of defects. Ding et al. [16] proposed a neural network for the detection of micro-defects 
in PCBs, leveraging the inherent multi-scale and pyramid hierarchy structure of deep convolutional networks to construct 
feature pyramids. The robustness of the neural network was validated through ablation experiments, achieving a mean average 
precision (mAP) of 98.90%. Shen et al. [17] established a new lightweight CNN model for PCB component inspection. The 
detection accuracy of 12 different electronic components is improved to 85.8%. 
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YOLO (You only look once, YOLO) series network is a typical single-stage target detection method, it has been widely 
used in the field of defect detection in recent years [18]. Mamidi et al. [19] introduced a lightweight YOLOv4-tiny network 
for the identification and classification of defects in printed circuit boards. The attained mAP of 79.72% across six distinct 
defect types showcases its effectiveness in this field, demonstrating impressive results. Wang et al. [20] proposed a lightweight 
underwater object detection model based on YOLOv6. a lighter backbone network was developed by incorporating the 
ODConv module into the rebuilt EfficientNetv2, aiming to reduce the number of parameters and floating point operations. Li 
et al. [21] proposed a lightweight aluminum surface defect detection model, M2-BL-YOLOv4, which was based on the 
YOLOv4 algorithm. The complex CSPDark-Net53 backbone network was restructured into an inverted residual structure, 
leading to a significant reduction in model parameters and an improved detection speed. The findings indicated that the 
enhanced M2-BL-YOLOv4 achieves an average accuracy of 93.5%. The lightweight network was capable of effectively 
fulfilling its tasks, although extensive training with a large dataset was necessary to obtain a stable model. Ling et al. [22] 
proposed a novel CNN model for dense PCB component detection by incorporating several modifications into YOLOv8. The 
proposed model achieved the highest mean average precisions of 87.7% (mAP@0.5) and 75.3% (mAP@0.5:0.95) respectively, 
surpassing other state-of-the-art models. However, the performance of this method in unbalanced PCB defect samples needed 
to be further improved. Xia et al. [23] designed a global contextual attention augmented YOLO model with ConvMixer 
prediction heads (GCC-YOLO) to solve the problem of missed and false detection caused by the large number of tiny targets 
and complex background textures in PCB. The GCC-YOLO improved the precision, recall, mAP@0.5, and mAP@0.5:0.95 
by 0.2%, 1.8%, 0.5%, and 8.3%, respectively, compared to YOLOv5s. Moreover, it had a smaller model volume and faster 
reasoning speed compared to other algorithms. But the detection precision for the relatively large-sized spurious copper type 
defect had a lower precision value by the GCC-YOLO. 

However, the detection accuracy and speed of existing models need further improvement in order to achieve batch and 
accurate detection of PCB, given their large size difference, diverse appearance, and dense distribution. 

The YOLO framework exhibits superior performance in the detection of minute defects [24]. In this study, an improved 
YOLOv8-C2f_DBB-SPFF_LSKA (YOLOv8-CDSL) is used to detect defects of the PCB. The diverse branch block (DBB) 
is used to improve the faster version of CSP bottleneck with two convolutions (C2f) module in the YOLOv8 backbone network. 
The large separable kernel attention (LSKA) mechanism is also added to the SPPF module of the YOLOv8 network. The 
C2F_DBB module can significantly improve the model's ability to identify small-scale PCB defects, and greatly enhance the 
model's performance in comprehensive feature extraction. Thus significantly improving the overall accuracy of the model. The 
SPPF_LSKA module can reduce the computing power consumption of model training. Consequently, it significantly enhances 
the detection capability of the improved YOLOv8-CDSL network. 

II. MATERIAL AND METHODS 
II. A. Typical surface defects of PCB 
PCB has evolved from single-layer to double-sided, multi-layer, and flexible configurations while maintaining its own 
developmental trajectory. As it continues to advance towards higher precision, density, and reliability, PCBs are becoming 
smaller in size, more cost-effective, and increasingly high-performing. The manufacturing process of the PCB is shown in 
Figure 1. 

 
Figure 1: Manufacturing process of the PCB. 
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The manufacturing process of the mainly includes pressed film, exposure, develop, etch, strip, testing, and other key 
processes. The manufacturing processes of PCB are varied and the processing environments are complex. It is easy to cause a 
variety of defects. The typical surface defects of PCB include missing hole, mouse bite, short, spur, open circuit, and spurious 
copper [25]. The typical surface defects of PCB are shown in Figure 2. The identification of PCB surface defects has become 
a critical process in ensuring the quality of PCB production, as these flaws not only significantly impact the final product's 
performance and quality, but also result in substantial economic losses for related industries. This has garnered significant 
attention from the industry. 

 

Figure 2: Typical surface defects of PCB. 

II. B. Structure of the improved YOLOv8-CDSL network 
The you only look once (YOLO) series model is an effective single-stage target detection algorithm within the field of target 
detection [26]. YOLOv8 model has been widely used in the field of small size defect detection in recent years [27]. With the 
continuous iteration of YOLO, the network performance of the network has become more and more powerful. YOLOv8 is a 
state-of-the-art (SOTA) model incorporating a novel backbone network, anchor-less detector, and loss function [28]. The 
YOLOv8 network incorporates an attention mechanism and optimization strategy to enhance the accuracy and performance of 
target detection. The YOLOv8 framework is comprised of five distinct sizes: nano, small, medium, large, and xtra-large [29]. 
Based on YOLOv8-nano network, an improved YOLOv8-C2f_DBB-SPFF-LSKA (YOLOv8-CDSL) network is proposed. 
The structure of the improved YOLOv8- CDSL network for defect detection of the PCB is shown in Figure 3. Based on the 
YOLOv8-nano backbone network, the improved YOLOv8-CDSL network used a diverse branch block (DBB) to replace a 
Bottleneck convolution in the existing C2f module. The replacement module is denoted as C2f_DBB. Replace the C2f modules 
of layers 3, 5, 7, and 9 in the YOLOv8-nano network with C2F_DBB modules. Another improvement is the addition of large 
separable kernel attention (LSKA) in the SPPF module. This enhancement can expand the acceptance range of the 
convolutional structure while consuming less computational power, and thoroughly explore the internal connections within 
PCB defect image information. 

In the basic YOLOv8 network architecture, the bottleneck module of C2f is usually used to perform dimensionality reduction 
tasks in feature dimensions. However, convolution operations inside the module may result in partial loss of spatial 
information, thus limiting the model's ability to fully express features. Especially when dealing with PCB defect data sets, due 
to the diversity of defect scales, the performance of the original bottleneck module in extracting multi-scale defect features is 
not ideal, resulting in lower detection accuracy and lower processing efficiency. The structure of the C2f_DBB module in the 
improved YOLOv8-CDSL network is shown in Figure 4. 
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Figure 3: Improved YOLOv8-CDSL network structure for defect detection of the PCB. 

 

Figure 4: Structure of the C2f_DBB module in the improved YOLOv8-CDSL network. 

The convolutional structure within the C2f_DBB module encompasses a series of branches involving convolution, multi-
scale convolution, and average pooling operations. These intricate branches are simplified back to simple convolutions during 
inference. This paper introduces the addition of 4 branch-specific convolution operations by channels, with the first branch 
consisting of 1×1 convolution followed by batch normalization. The second branch involves 1×1 convolution and batch 
normalization followed by average pooling and additional batch normalization. The third branch includes 1×1 convolution and 
batch normalization followed by maximum pooling and another round of batch normalization using 1×1 convolutions. Lastly, 
the fourth branch consists of a 3×3 convolution followed by batch normalization. These four branches then combine channels 
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before passing through a non-linear layer, constituting the DBB module utilized in this study. The multi-branch topology of 
DBB, combined with paths of varying scales and complexity, serves to enrich the feature space and enhance model detection 
performance. The DBB module introduces complexity during training, but reverts to the original inference structure during 
actual inference, thereby decoupling the network structure between training and inference times. In this study, the DBB module 
replaces Conv in the Bottleneck module of C2f, resulting in improved performance of the YOLOv8 network with the 
introduction of the C2F_DBB module. 

The LSKA module is utilized to enhance the SPPF module in the original YOLOv8, resulting in a larger receptive field 
while conserving memory and computational resources. LSKA functions as an attention mechanism by stacking large kernels 
and connecting cascade depth-wise convolution (DW-Conv) and dilated depth-wise convolution (DW-D-Conv) to capture 
local intrinsic dependencies of images. The structure of the SPPF-LSKA module in the improved YOLOv8-CDSL network 
is shown in Figure 5. 

 

Figure 5: Structure of the SPPF_LSKA module in the improved YOLOv8-CDSL network. 

The SPPF_LSKA module is implemented by adding LSKA to the existing structure of SPPF. Compared with ordinary K×K 
convolution, LSKA disassembles it into four convolutions of 1× (2d-1), (2d-1) ×1, 1× (K/d), and (K/d) ×1. The optimization 
strategy is to first replace K×K ordinary convolution with a cascade deep convolution of (2d-1) × (2d-1) and (K/d) × (K/d) 
extended deep convolution to introduce a larger convolution kernel, and further separate the convolution kernel of (2d-1) × 
(2d-1) into a convolution kernel of 1× (2d-1) and (2d-1) ×1. The (K/d) × (K/d) convolution kernel is separated into 1× (K/d) 
and (K/d) ×1 convolution kernels, and the second increase in the number of parameters caused by larger convolution kernels 
is suppressed by this separation. Moreover, it effectively suppresses the secondary increase in parameter count when increasing 
kernel size. 
 

II. C. Loss function of the improved YOLOv8-CDSL network 
The regression loss for the object detection bounding box in YOLOv8 consists of two components. The first component is the 
distributed focus loss (DFL), which utilizes cross-entropy as an optimization mechanism to align the predicted distribution of 
the network with the label value. The second component involves using the complete intersection over union (CIoU) loss 
measure to compute the cross-linking (IoU) between the prediction and true bounding box [30]. The final regression loss is a 
weighted sum of these two parts, utilizing specific weight coefficients. The CIoU loss is calculated as follows [27]: 
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where wc and hc represent the width and height of the minimum bounding rectangle of the prediction box and the target box, 
while w and h denote the width and height of the prediction box. Similarly, wgt and hgt indicate the width and height of the 
target box respectively. Additionally, b and bgt are used to denote the boundary center points of the prediction box and the 
target box respectively. ρ represents the Euclidean distance between b and bgt. 

The DFL optimizes the probability of the two nearest locations to the label using cross-entropy, allowing the network to 
quickly focus on the local distribution of the target location. The weight of its neighboring integer coordinates is determined 
through linear interpolation. The DFL is calculated as follows: 
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where y represents the general distribution value, i denotes the label number. Si indicates the probability of the predicted value 
yi being close to the label. 

III. RESULTS 
III. A. Datasets of the improved YOLOv8-CDSL network 
In order to verify the effectiveness and superiority of the improved YOLOv8-CDSL network, a large number of sample data 
detection is required. Hence, according to the PCB defect dataset released by Peking University, there are a total of 693 images 
in PKU-Market-PCB [31]. The dataset contains six typical surface defects missing hole, mouse bite, short, spur, open circuit, 
and spurious copper. The study in this paper utilizes exclusively the images from this publicly available dataset and reclassifies 
the defects. 

Due to the limited number of samples in the PKU-Market-PCB and the small ratio of defect target size to sample size, 
direct use of the data for training may lead to overfitting and poor training results. To address these issues, the mosaic random 
data augmentation technology is employed to process sample data and enhance the diversity of defect targets [32]. Thereby 
improving the training characteristics of the YOLOv8-CDSL network. The hyperparameters associated with the mosaic 
random data augmentation is shown in Table 1. 

Table 1: Hyperparameters associated with the mosaic random data augmentation. 

Parameters Parameters definitions Value 
HSV-hue Randomly adjust the hue of images 0.03 

HSV-saturation Randomly adjust the saturation of images 0.95 
HSV-value Randomly adjust the value of images 0.5 
Image scale Scale images 0.6 

Rotate Randomly rotate images  15 
Flip Randomly flip images horizontally 10 

Mosaic Randomly spliced mixed images 1 
 
Through random data enhancement technique, the data set is expanded effectively. The total of images is 6930. The size of 

the defect sample data is 640*640 pixels. The dataset is partitioned into training, validation, and test sets in an 8:1:1 ratio. The 
dataset division of PCB defect images in training, verification, and test datasets is shown in Figure 6. 
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Figure 6: Dataset division of PCB defect images in training, verification, and test datasets. 

III. B. Ablation experiments of the improved YOLOv8-CDSL network 
To assess the efficacy of the improved YOLOv8-CDSL network, derived from the YOLOV8-nano network, successive 
ablation experiments are conducted by incrementally incorporating the improved modules.  

During the training process, the average precision (AP) is utilized for evaluating the test results, as it provides a balanced 
assessment of both precision (P) and recall (R) [33]. The normal sample is classified as positive (P), while the defective 
sample is classified as negative (N). The trained model makes predictions on the polarity of the input sample, categorizing it 
as either positive or negative. Positive samples are labeled as true (T), and negative samples are labeled as false (F) [34]. The 
predicted results can be described in terms of true positive (TP), true negative (TN), false positive (FP), and false negative 
(FN). The P and R are calculated as follows: 
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The AP and mAP are calculated as the follow 
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where P(r) is the P–R curve plotted by precision and recall values. The AP metric offers a comprehensive evaluation of 
accuracy and recall by taking into account the area under the P-R curve [35]. T is the number of the PCB surface defect 
classes. 

The algorithm described in this paper is implemented using PyCharm Community Edition 2024.1.4 software (JetBrains, 
Czech Republic). The hardware setup for all experiments consisted of an Intel(R) Xeon(R) E5-2680 @ 2.70 GHz (16 GB 
RAM) CPU and NVIDIA Quadro RTX 3060 GPU. Additionally, all neural networks were trained using the adam optimizer 
with a fixed learning rate of 0.0001. 

The YOLOv8-nano network, which includes C2f and SPFF modules, served as the basis for the ablation experiment. 
Subsequently, the DBB module and LSKA module are added to the C2f and SPFF modules for comparison, resulting in 
YOLOv8-C2f_DBB and YOLOv8-SPFF_LSKA network. These were then compared with the improve YOLOv8-CDSL 
network. The epoch set as 100. Figure. 7 shows the training loss and validation loss of the network in detecting defects of the 
PCB. It can be seen from the data the improved YOLOv8-CDSL network has the lowest training loss and good training 
characteristics. 
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Figure 7: Training loss and validation loss of the network in detecting defects of the PCB. 

The results of the ablation experiments of the networks are shown in Table 2. By incorporating the DBB module and LSKA 
module into the YOLOv8-nano network, the detection performance for PCB defects can be significantly improved. The P of 
the improved YOLOV8-CDSL network is 5.58%, 3.69%, and 2.85% higher than that of YOLOv8-nano, YOLOv8-C2f_DBB, 
and YOLOv8-SPFF_LSKA networks respectively. The R of the improved YOLOV8-CDSL network is 6.97%, 3.67%, and 
1.07% higher than that of YOLOv8-nano, YOLOv8-C2f_DBB, and YOLOv8-SPFF_LSKA networks respectively. The mAP 
of the improved YOLOV8-CDSL network is 2.73%, 1.87%, and 0.98% higher than that of YOLOv8-nano, YOLOv8-
C2f_DBB, and YOLOv8-SPFF_LSKA networks respectively.  

Table 2: Results of the ablation experiments of the networks. 

Network P R mAP 
YOLOv8-nano 93.57% 91.47% 97.24% 

YOLOv8-C2f_DBB 95.27% 94.39% 98.06% 
YOLOv8-SPFF_LSKA 96.05% 96.81% 98.92% 

Improved YOLOv8-CDSL 98.79% 97.85% 99.89% 
 

III. C. Defect detection results of the PCB 
Comparative experiments were conducted to validate the superiority of the improved YOLOv8-CDSL network for PCB 
surface defect detection, using YOLOv8-nano [36], YOLOv5 [37], and YOLOv6 [38] networks as comparators under identical 
dataset and parameter conditions. The epoch set as 100. The comparison of the accuracy of the networks in detecting defects 
of the PCB is shown in Figure. 8. These networks are capable of effectively detecting surface defects on PCBs. Notably, the 
improved YOLOv8-CDSL network demonstrated faster and more significant improvements in training and validation 
accuracy, allowing the prediction box to closely approach ground truth values. The inflection point of the improved YOLOv8-
CDSL network occurs earlier than that of YOLOv8-nano, YOLOv5, and YOLOv6 networks. The results indicate that the 
improved YOLOv8-CDSL network exhibits a faster and more stable convergence speed. 

  

Figure 8: Comparison of the accuracy of the networks in detecting defects of the PCB. 
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The four comparison networks demonstrate high accuracy in detecting the six common defects of PCB, as shown in Figure 
9. The numbers are the probability of these networks detecting the different PCB surface defects. 

  

(a) (b) 

  

(c) (d) 

Figure 9: Comparison of the PCB defect detection results, (a) YOLOv8-nano, (b) YOLOv5, (c) YOLOv6, (d) Improved 
YOLOv8-CDSL. 

The classification of surface defects on PCB is shown in Table 3. The improved YOLOv8-CDSL network has the highest 
mAP and maximum of 6 types of defects. The mAP is 99.13%. Compared to the YOLOv8-nano network, the mAP has 
improved by 4.52%. This shows that by adding C2f_DBB and SPFF_LSKA modules, the improved YOLOv8-CDSL network 
can effectively improve the accuracy of six types of PCB surface defects. The YOLOv5 and YOLOv6 networks demonstrate 
strong detection accuracy for PCB surface defects. The mAP of the improved YOLOV8-CDSL network is 3.67% and 1.47% 
higher than that of the YOLOv5 and YOLOv6 networks, respectively. These results indicate that the improved YOLOv8-
CDSL network effectively detects PCB surface defects and achieves superior detection performance. 

Table 3: Classification of surface defects on PCB. 

Network 
mAP(%) 

mAP(%) 
Missing hole Mouse bite Spur Open circuit Short Spurious copper 

YOLOv8-nano 95.12 94.97 96.17 94.09 95.14 93.59 94.85 
YOLOv5 96.03 95.01 95.39 94.62 95.06 97.61 95.62 
YOLOv6 98.47 96.53 97.46 97.91 97.35 98.47 97.70 

Improved YOLOv8-CDSL (proposed) 99.69 99.27 98.91 98.24 99.67 99.02 99.13 
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IV. Conclusions 
Aiming at the problem of high false detection rate of PCB defect detection,an improved YOLOv8-C2f_DBB-SPFF_LSKA 
(YOLOv8-CDSL) is used to detect defects of the PCB. The diverse branch block (DBB) is used to improve the faster version 
of CSP bottleneck with two convolutions (C2f) module in the YOLOv8 backbone network. The large separable kernel attention 
(LSKA) mechanism is also added to the SPPF module of the YOLOv8 network. The C2F_DBB module can significantly 
improve the model's ability to identify small-scale PCB defects, and greatly enhance the model's performance in 
comprehensive feature extraction. Thus significantly improving the overall accuracy of the model. The SPPF_LSKA module 
can reduce the computing power consumption of model training. Consequently, it significantly enhances the detection 
capability of the improved YOLOv8-CDSL network. The effectiveness of the improved scheme was verified by ablation 
experiments. At the same time, it is verified by comparative experiments that the improved YOLOv8-CDSL network has the 
highest detection accuracy of 99.13% for six common surface defects of PCB. 
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