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Abstract This paper introduces deep reinforcement learning into automated penetration testing to plan and optimize 
penetration testing supply and defense paths. After modeling the automated penetration problem, the paper simplifies and 
evaluates the benefits of the DQN algorithm in deep reinforcement learning, finds the optimal penetration path through sample 
augmentation, and proposes the MASK-SALT-DQN algorithm. Through simulation experiments, the paper verifies the 
operation and effectiveness of the algorithm. In both simple and complex scenarios, the MASK-SALT-DQN algorithm 
achieves the fastest runtime speed, significantly enhancing the agent's learning efficiency. The algorithm provides accurate 
evaluation criteria for penetration testing path planning results. Compared to penetration testing learning algorithms based on 
Nature DQN, the MASK-SALT-DQN algorithm demonstrates a higher convergence value in its learning curve, indicating 
superior convergence performance. 
 
Index Terms deep reinforcement learning, penetration testing, path optimization, MASK-SALT-DQN 

I. Introduction 
With the rapid deployment and adoption of fifth-generation mobile communications, networks have become one of the critical 
infrastructure components of the national economy, providing robust support for achieving universal connectivity. However, 
as a growing number of heterogeneous terminals and devices connect to networks, and new technologies such as network 
virtualization, software-defined networking, and edge computing are widely adopted, network boundaries are becoming 
increasingly blurred, expanding the network attack surface and making networks more vulnerable to attacks [1]-[4]. 
Cybersecurity incidents such as data breaches, ransomware, and hacking attacks are occurring with increasing frequency, and 
the economic losses caused by these incidents are also growing significantly [5]-[7]. To address cybersecurity risks, a series 
of security measures have been widely implemented, including conducting intrusion detection, deploying network firewalls 
and signaling firewalls, strengthening data encryption and integrity protection measures, and enhancing security isolation and 
secure transmission capabilities [8]-[11]. However, these methods primarily focus on the defender's perspective, passively 
detecting and maintaining the smooth operation of network systems, lacking proactivity in network protection [12]-[14]. With 
the emergence and evolution of highly stealthy unknown threats, an increasing number of researchers believe that cyberattacks 
are inevitable, and actively detecting network vulnerabilities and achieving prevention against cyberattacks holds significant 
importance [15], [16]. 

Penetration testing is an authorized simulated attack conducted on information systems to identify vulnerabilities that 
threaten their security, thereby assessing their security [17]. However, penetration testing techniques have their limitations. 
On one hand, the penetration testing process incurs significant time and economic costs, particularly when conducting 
penetration testing on large, complex network systems [18]-[20]. On the other hand, the results of penetration testing heavily 
depend on the cybersecurity knowledge level of the human experts conducting the testing, leading to significant variability 
[21]-[23]. As cyberattacks become increasingly frequent and complex, traditional manual penetration testing methods can no 
longer meet the demand for quickly identifying and addressing security vulnerabilities [24]. By automating penetration testing, 
it is possible to mitigate the human resource costs and reliance on human experts to some extent [25]. 

In recent years, deep reinforcement learning algorithms have been widely applied in the field of automated penetration 
testing. Reference [26] established an automated penetration testing framework based on deep reinforcement learning, which 
generates attack trees targeting specific network topologies and uses deep Q-learning networks (DQN) to screen for optimal 
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attack paths, providing effective solutions for defense training and attack training in cybersecurity activities. Reference [27] 
introduces reinforcement learning technology into cybersecurity activities to form an intelligent automated penetration testing 
system (IAPTS), which reduces the human resources and time costs of penetration testing by learning and reproducing complex 
penetration testing activities, while improving the frequency and reliability of testing. Reference [28] investigates automated 
test case generation methods in hardware verification, combining advanced deep reinforcement learning technology with 
traditional verification methods to achieve significant improvements in test coverage and security vulnerability detection 
capabilities. Literature [29] demonstrates that an automated penetration testing framework integrating deep reinforcement 
learning (DRL) methods exhibits excellent responsiveness, adaptability, and scalability, providing an effective solution for 
complex, dynamic, and high-dimensional network attack threats. Literature [30] models the network penetration testing 
process as a partially observable Markov decision process (POMDP) and proposes a new algorithm named ND3RQN to 
optimize the interaction strategy between the agent and the network environment, thereby identifying paths in the network 
structure that are more susceptible to attacks. Literature [31] also employs a deep Q-learning algorithm with a reward 
mechanism (DQRM) within a partially observable POMDP for automated penetration testing path planning. Experimental 
results indicate that knowledge-driven automated penetration testing methods based on reinforcement learning and reward 
mechanisms exhibit superior penetration testing performance. Reference [32] emphasizes that automated attack planning is 
the core concept of automated penetration testing. To this end, it proposes an automated attack planning (NIG-AP) algorithm 
based on network information acquisition, which can detect hidden attack paths from a hacker's perspective in POPDMP. 
Literature [33] provides a detailed analysis of relevant models, methods, and simulation environments for penetration path 
planning. Its application in automated penetration testing significantly improves the overall efficiency and success rate of 
detecting network and system vulnerabilities. Literature [34] addresses the requirements for efficient identification and rapid 
convergence in penetration testing within complex network environments by proposing an automated penetration testing model 
that combines curiosity mechanisms with reinforcement learning methods. In experimental simulations of network 
environments, this approach achieves both convergence speed and computational performance. In summary, automated 
penetration testing methods based on deep reinforcement learning can effectively reflect the uncertainty in the penetration 
process and are more suitable for penetration testing. However, they have disadvantages such as high computational complexity, 
slow convergence speed, high requirements for computational hardware, and unsuitability for large-scale networks. Therefore, 
reinforcement learning algorithms need to be specifically designed to optimize attack paths and decision-making. 

The paper first analyzes penetration testing, discusses issues related to automated penetration testing, and models them. The 
most representative DQN algorithm in reinforcement learning is selected as the basis for the method in this paper. Based on 
the traditional DQN algorithm, after completing the solution space transformation, the solution is simplified and the benefits 
are evaluated. To accurately assess different vulnerabilities, the paper proposes the MASK-SALT-DQN algorithm by 
introducing a vulnerability exploitation sample enhancement method to increase the generation of relevant sample data during 
model training. To evaluate the performance of the proposed MASK-SALT-DQN algorithm, the paper analyzes its runtime, 
detection success rate, defense success rate, and algorithm hyperparameters through experiments. 

II. Overview of Penetration Testing 
Penetration testing is an active security assessment method that simulates an attacker's techniques to analyze security. Similar 
to malicious attacks, it also aims to discover confidential data in the system, gain control of the system, and identify potential 
risks that may affect business continuity. The biggest difference between the two is that penetration testing is a method of 
analyzing system security using non-destructive means, conducted with the approval of the client and under conditions of 
confidentiality. Through the risks identified during the penetration process, it provides solutions and security recommendations 
for the system. 
 
II. A. Classification of Penetration Testing 
Based on the scope of penetration testing, penetration testing can be divided into web penetration and internal network 
penetration. If classified according to different testing premises, penetration testing can also be divided into black box testing, 
white box testing, and gray box testing [35]. 
 
II. B. Steps in Penetration Testing 
According to the Penetration Testing Standards (PTES), penetration testing can be divided into the following steps: 

(1) Initial Interaction: The purpose of initial interaction is for penetration testers to communicate with the client to determine 
the scope, objectives, and constraints of the target system. At the same time, testers can obtain more information about the 
system under test from the client without significantly impacting the penetration testing process or results, thereby reducing 
the difficulty of their own testing. The client should consider factors such as the penetration testing timeline and effectiveness 
and provide appropriate assistance to the testers. 

(2) Information Collection: During the information collection phase, testers will gather information about all assets within 
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the system based on its characteristics and the information provided by the client. This includes, from the outside in: website 
URLs, system IP addresses, internal network topology, system configurations, system devices, firewall status, and other 
security device information. Information collection is the most critical step in penetration testing. Testers can use network 
space engines, social engineering, information collection tools, and other methods to probe for sensitive information, thereby 
gaining a more comprehensive understanding of all aspects of the system under test, better grasping the key points of the test, 
reducing unnecessary attack attempts, and increasing the penetration success rate. 

(3) Threat Modeling: Through early interaction and the information collection process, testers analyze potential security 
risks in the target network based on existing information and construct an overall penetration process (or penetration sequence) 
based on vulnerability exploitation methods. This process of developing an attack plan is referred to as threat modeling. 

(4) Vulnerability Analysis: After developing the attack plan, testers must further steal sensitive information and control of 
the target system to conduct vulnerability analysis. Testers can analyze and summarize potential security issues based on 
previously summarized attack contexts, host information, vulnerability scanning results, and other factors, thereby facilitating 
deeper vulnerability discovery and identifying as many potential risks as possible. 

(5) Vulnerability Exploitation: Vulnerability exploitation is the process by which testers verify security issues in the target 
system based on vulnerability analysis results. Testers must use actual vulnerability exploitation methods tailored to the type 
of vulnerability to initiate penetration against nodes in the target environment, with the aim of simulating an attacker's intrusion 
behavior to assess network robustness, steal sensitive information, or gain system privileges. 

(6) Post-Penetration: In the post-penetration phase, testers must attempt to maintain persistent control over the system 
privileges obtained through vulnerability exploitation. Using existing device privileges as a foothold, they continuously 
penetrate other uncontrolled hosts and devices to conduct an in-depth analysis of the target network, ultimately gaining control 
over the entire system. This involves identifying all assets within the system that pose security threats and obtaining as much 
confidential information as possible to achieve better penetration results. 

(7) Report Generation: The test report encompasses all critical intelligence information obtained by the tester, records the 
specific processes of detecting, identifying, and exploiting vulnerabilities, describes penetration sequences that could pose 
business threat risks, and outlines methods for obtaining sensitive information. Additionally, based on the aforementioned 
issues, the report proposes security maintenance recommendations and solutions. 

III. Modeling automated penetration testing problems based on reinforcement learning 
III. A. Description of automated penetration testing issues 
III. A. 1) Automated Penetration Testing Problem Modeling 
This paper is based on the characteristics of automated penetration testing scenarios and relevant knowledge in the field of 
cybersecurity. It combines formal modeling of automated penetration testing problems using open-source network attack and 
defense platforms such as CyberBattleSim to abstract the attack behavior of penetration testing entities as follows: This paper 
considers that penetration testing entities can perform three different types of attack actions: executing local attacks, executing 
remote attacks, and seizing control of nodes. A successful attack launched by a penetration testing entity may result in various 
outcomes, such as discovering new nodes, obtaining leaked credentials, extracting node attributes, seizing control of target 
nodes, or elevating privileges on target nodes. The penetration testing entity is equipped with a local vulnerability attack 
arsenal, a remote vulnerability attack arsenal, and a target port library, which are used to select local vulnerability attack 
weapons, remote vulnerability attack weapons, or target ports for use during attacks. 
 
III. A. 2) POMDP Problem Modeling 
This paper models the problem of automated penetration testing as a partially observable Markov decision process [36]. 
Formally, a partially observable Markov decision process can be represented by the tuple , , , , ,S A T R O   . Here, S  is the 
finite set of states of the target network system,   is the finite set of local observations of the target network system that the 
penetration tester can observe, A  is the space of attack actions that the penetration tester can execute. At each time step t , 
the penetration tester is in a system state ts S  and perceives a system local observation to  . The penetration tester only 
has local observations of the target network system because they cannot predict all the information of the target network system 
in advance. For example, there are 100 host nodes in the target network system; at a certain moment, the penetration tester 
may have only discovered 13 host nodes in the system. The information about all 100 host nodes in the target network system 
and the network topology information constitute the environmental state, while the information about the host nodes discovered 
by the penetration testing entity constitutes the observation at the current time. The observation to  perceived by the 
penetration testing entity depends on the probability distribution ~ ( )t to O s  . Based on the perceived local observation, the 
penetration tester executes an attack ta A  and transitions to the next state 1ts   according to the state transition 
probability distribution 1( , , )t t tT s a s   where 1( , , )t t tT s a s   is a conditional probability function, which can be expressed as 

( 1 | , )t t tP s s a  :R S A R   is the state-action-related reward function, which provides the immediate reward signal 
~ ( , )t t tr R s a  obtained by taking each action in each state. 
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The solution to a partially observable Markov decision process problem is an optimal policy * . This optimal strategy 
maps the local observations of the penetration testing subject to the attack actions taken, with the objective of maximizing the 

expected long-term total reward t
t

t

G r











 , where [0,1]   is a discount factor that determines the relative importance 

of long-term rewards. 
 
III. B. Overview of Reinforcement Learning 
III. B. 1) Basic Concepts of Reinforcement Learning 
Reinforcement learning is a machine learning paradigm in which an agent learns through trial and error, with behavior driven 
by rewards obtained through interaction with the environment. It is one of the three major machine learning paradigms, 
alongside supervised learning and unsupervised learning. As an important branch of machine learning, reinforcement learning 
differs significantly from the other two machine learning paradigms: unlike supervised learning, reinforcement learning does 
not rely on labeled training datasets but instead depends on the agent's own experience and learning capabilities; unlike 
unsupervised learning, the goal of reinforcement learning is to maximize long-term rewards rather than uncovering the 
underlying structure of the data. Reinforcement learning places greater emphasis on learning through interaction-oriented 
goals, acquiring knowledge and improving decision strategies through the agent's interaction with the environment. In 
reinforcement learning, the agent's goal is to maximize long-term cumulative rewards, i.e., returns, by selecting actions. The 
agent discovers which actions yield the greatest rewards solely through trial and error. The agent's actions not only influence 
immediate returns but may also affect the next environmental state, thereby impacting subsequent returns. 
 
III. B. 2) Core Elements of Reinforcement Learning 
(1) Strategy 

A strategy defines the action guidelines that an intelligent agent should take in a specific environmental state. In essence, it 
maps the environmental state to the actions that the intelligent agent should perform. The strategy of an intelligent agent is 
typically represented by the symbol  . Based on the randomness of the strategy distribution, intelligent agents can be divided 
into two categories: 

Deterministic strategy agents: The agent's strategy is expressed as ( )a s . The agent can obtain a deterministic action a  
based on the strategy   and the current environmental state s . 

Stochastic strategy agents: The agent's strategy is expressed as ( | ) ( | )t ta s P A a S s    . The agent can obtain the 
probability of executing action a  based on the policy   and the current environment state s . 

(2) Reward function 
The reward function is a key component of reinforcement learning problems. It defines the short-term goal that the agent 

obtains after each action. In reinforcement learning, after the agent executes an action, the environment sends it a scalar value 
called a reward (which may be delayed). The reward represents the evaluation value of executing a specific action in a specific 
state. 

Assuming that the agent takes action a  in state s , the reward obtained by the agent can be expressed by equation (1): 

 
1 ]|[ ,a

s t t tR E R S s A a    (1) 

(3) Value function 
The value function is mainly used to guide the intelligent agent in evaluating the merits of states or state actions from a 

long-term perspective. The value of a state is the expected cumulative (discounted) reward that the intelligent agent can obtain 
starting from that state. 

Assuming that the strategy executed by the intelligent agent is  , the value function of the intelligent agent in state s  can 
be expressed by equation (2): 

 2
1 2 3( ) ( | )t t t tv s E R R R S s           (2) 

(4) Environment Model 
An environment model is a simulation of external environmental behavior that can be used to infer the behavior of the 

environment. Based on a given state and action, the environment model predicts the probability distribution of the next state 
's  and the mathematical expectation of the next moment's reward R . This makes the environment model an important tool 

for planning. 
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III. B. 3) Deep Reinforcement Learning 
As the overall state and actions in reinforcement learning continue to expand, using the aforementioned reinforcement learning 
solver algorithms becomes inefficient, and there is also the issue of conventional tables being unable to store large amounts of 
data. A feasible solution is to incorporate deep learning concepts into reinforcement learning, using neural networks to fit the 
action-value function ( , )Q s a  of reinforcement learning, thereby replacing the traditional table-based data storage method 
of reinforcement learning algorithms. This special reinforcement learning solver method is referred to as deep reinforcement 
learning [37]. 

DQN is the most representative algorithm in deep reinforcement learning [38]. Its core idea is to combine convolutional 
neural networks (CNNs) with Q-learning in reinforcement learning, using three convolutional layers and two fully connected 
layers to perform nonlinear transformations. The output layer then generates the value of ( , )Q s a  for each state-action pair 
and calculates the current policy. DQN typically uses an actor-learner architecture, where the DQN-actor handles interaction 
with the environment, and the DQN-learner updates the action-value function and policy. 

To address issues such as instability when representing value functions with nonlinear networks, DQN employs two neural 
networks to represent the current Q-value and the target Q-value (target Q). The current Q-value is used to estimate the 
reward obtained during action exploration, and after every N steps, the parameters of the estimation network are synchronized 
to the target network. The target Q-value is used to generate the optimal policy. Additionally, DQN stores samples of 
interactions with the environment ( 1, , ,t t tS A reward S  , i.e., actions, resulting state transitions, and rewards) in an experience 
pool (replay buffer). After a certain number of action steps, it randomly selects samples from the experience pool for learning: 

 ( , | )i iY r maxQ s a  
   (3) 

Among them, iY  is the target Q value. 
Then, the gradient descent algorithm is used to update the neural network parameters  , whose loss function and gradient 

function are respectively: 

 
, , ,( ) [( ( , | )) 2]i s a r s i iL E Y Q s a  

   (4) 

 
, , ,( ) [( ( , | ) ( , | )]

i ii s a r s i i iL E Y Q s a Q s a        (5) 

Among them, ( )iL   is the loss function, and 
i

  is the gradient. 

IV. Automated penetration path planning and optimization 
IV. A. Simplification and Benefit Assessment 
The DQN algorithm selects the next action based on the expected cumulative future reward that each action in the action list 
can bring after execution, as evaluated from the current state. The DQN algorithm consists of two networks: eval_network and 
target_network. The agent first observes the state s  and calculates the expected future reward for each action using 
eval_network, i.e., the Q-value. Then, according to the   greedy rule to select action a  to execute, obtains reward r  and 
observes new state s , iterating this process to obtain a series of quadruples ( , , , )s a r s  and storing them in the experience 
replay pool. In each round, the model selects a set of quadruples from the experience replay pool and calculates the loss based 
on the mean squared error. For each selected quadruple ( , , , )s a r s , the target_network calculates the value of each action 
under s  and selects the maximum Q-value for calculating the target Q-value. Additionally, the parameters of the 
eval_network are copied to the target_network at regular intervals. The training process of DQN is shown in Figure 1. 
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Figure 1: DQN training process 
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The calculation formula for the target Q value is shown in Equation (6): 

 max ( , ; )i a iy r Q s a  
     (6) 

The calculation formula for loss is shown in Equation (7): 

 
( , , , )~

( ) [( max ( , ; ) ( , ; )) ( , ; )]
ii i i i is a r s D a

L E r Q s a Q s a Q s a     
       (7) 

Among them, D  is the empirical replay pool; i  is the parameter of eval_network; iy  is the target Q value;   is a 
discount factor between 0 and 1, used to balance the importance of immediate rewards and future rewards. 

Then, gradient descent is used for gradient updating. The gradient formula of loss is shown in Equation (8): 

 
( , , , )~

( ) [( max ( , ; ) ( , ; )) ( , ; )]
i ii i i i is a r s D a
L E r Q s a Q s a Q s a      

        (8) 

The solution space transformation based on invalid action masking is achieved by modifying the action selection process in 
the above model. In the eval_network, invalid action masking is divided into two cases. In the first case, the model randomly 
selects actions with a probability of  . To exclude the selection of invalid actions, it is first necessary to obtain a list of valid 
actions based on the current state, and then limit the selection range to that list. In the second case, the model selects the action 
with the maximum Q-value with a probability of 1  . This requires obtaining the list of invalid actions based on the current 
state s , then replacing the Q-values of the invalid actions with the minimum value ( )M inf , and finally allowing the model 
to select the action with the maximum Q-value. The target_network always implements masking according to the second case 
described above. 

Next, we analyze the effectiveness of the solution space transformation in the above model processing. In each step of DQN 
training, the above solution space transformation process covers all cases of action selection, ensuring that the model does not 
select invalid actions. As can be seen from the loss function described in Equation (6), the Q-values involved in calculating 
the loss are the Q-value of action a  selected by the eval_network in the current state s  and the Q-value of action a  
selected by the target_network in the transitioned state s . Since the solution space transformation has been performed, both 
actions a  and a  are valid actions. Therefore, the calculated loss and its gradient are not affected by invalid actions, 
meaning that invalid actions do not participate in the model's iterative update process. In summary, the solution space 
transformation method proposed in this paper ensures that the agent does not select invalid actions during the exploration 
process while also not affecting the model's update process. 

As described above, during the model exploration process, the first positive reward obtained for reaching the goal results in 
a large TD-error for that transition, significantly affecting the model adjustment. Solution space transformation allows the 
model to select actions only from the list of valid action candidates, and valid actions have a higher probability than invalid 
actions of transitioning the state toward the goal state. Therefore, the masked model can reach the goal in fewer steps during 
the initial exploration phase. Let the model with solution space transformation and the general model be denoted as 1M  and 

2M , respectively. Assuming that 1M  requires an average of n  steps to initially reach the target state, let 1M  is the 
proportion of invalid actions at the i th exploration step, where ,0 1i i   . Then, the random variable iX  describes the 
number of steps required for 2M  to explore valid actions compared to 1M  at this stage. The distribution function ( )iF X  
of iX  is shown in Equation (9): 

 1

1

( ) { } (1 )
x

j
i i i

j

F x P X x  



     (9) 

Then, the sum of the number of steps required for 2M  to first explore the target state is the sum of 1 2, , , nX X X , as 
shown in Equation (10). The expected value of stepE  represents the average number of steps required for 2M  to successfully 
explore the target state for the first time. The expected value calculation is shown in Equation (11): 

 
1

i
i n

sum X
 

   (10) 

 
1 1

1
( ) ( )

1step i
i n i n i

E E sum E X
   

  
   (11) 

It can be seen that during the initial exploration phase of 1M , when the average number of steps to reach the target state is 
n , 2M  without solution space transformation requires far more than n  steps, as indicated by stepE . Therefore, solution 
space transformation effectively reduces the number of steps required to achieve the target state for the first time. To quantify 
the effect of the solution space transformation, the compression ratio   is calculated using the expected number of steps 
required for the two models to first reach the target, as shown in Equation (12): 
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 stepE

n
   (12) 

The higher the compression ratio, the faster the agent achieves successful exploration on its first attempt through the solution 
space transformation, and the faster the model adjustment speed. Additionally, as the network scale increases, the proportion 
of ineffective actions during the initial exploration phase, denoted as i , becomes larger, resulting in a higher compression 
ratio. 

However, in the actual model training process, there is a step limit for each round of exploration, denoted as N . When the 
model's exploration steps exceed N , it will restart the exploration. Therefore, it is necessary to make certain corrections to 
sum. Assuming that the probability of sum N  is p , the distribution function ( )R S  of the number of rounds of model 
exploration S  is shown in Equation (13): 

 1

1

( ) { } (1 ) j

j s

R s P S s p p

 

     (13) 

When the number of exploration rounds is s , the number of exploration steps should be *( 1)N s m  , where m  has 
the same distribution as sum, but is restricted to m N  . In summary, the expected number of steps stepE   required for the 
first exploration of the corrected 2M  to complete the objective is calculated by equation (14): 

 

'

1

( *( 1)) ( )

{ }*( 1) ( )

1
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






  
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
 

  (14) 

IV. B. Sample Enhancement 
Accurate assessment of different vulnerabilities is key to finding the optimal penetration path. At any given moment, an agent 
has multiple potential attack targets and vulnerabilities, and the uncertainty of the results of vulnerability exploitation actions 
is significant. The agent requires more sample data to accurately assess and select appropriate vulnerability exploitation actions. 
However, during model training, especially in the early stages, action selection primarily relies on random exploration by the 
model, and the probability of different actions being selected is the same. Therefore, the number of samples related to 
vulnerability exploitation actions does not have an advantage. Additionally, as the network scale expands, the probability of 
hosts in the deeper parts of the network being explored decreases, leading to a scarcity of vulnerability exploitation-related 
samples for targets and insufficient evaluation of corresponding actions, resulting in an unstable model convergence process. 
Therefore, the model requires a large number of training steps to converge to the optimal penetration path. The solution process 
can be optimized by improving the composition of data in the experience replay pool. 

By proposing a vulnerability exploitation sample enhancement method (MASK-SALT-DQN), the generation of 
vulnerability exploitation action-related sample data during model training can be increased. When the model selects an 
exploit-type action, the agent first obtains all exploit actions that can be executed on the action target, then repeats these 
actions several times. At the same time, to prevent the generation of too many exploit-related samples, which would reduce 
the probability of sampling other action-related samples and further affect the evaluation of these actions and the convergence 
of the model, a certain threshold needs to be set. When the model's exploration rate falls below this threshold, vulnerability 
exploitation sample augmentation is no longer performed, and the number of samples generated can be reduced, thereby 
shortening the training time. Additionally, since vulnerability exploitation samples for hosts in the deeper layers of the network 
are relatively scarce, to prevent an imbalance in the proportion of vulnerability exploitation samples across different hosts, 
greater emphasis should be placed on enhancing vulnerability exploitation samples for hosts in the deeper layers of the network. 

V. Experiments and analysis of results 
V. A. Algorithm Performance Analysis 
This paper uses a network simulator to design a penetration testing environment. It demonstrates changes in total rewards and 
runtime during algorithm execution to validate algorithm performance. Three network environments of different scales are 
first designed to test the performance of the algorithm proposed in this paper against other algorithms. The number of subnets, 
the number of hosts per subnet, and the number of host vulnerabilities in each network environment gradually increase, while 
the complexity of the network structure also increases, requiring attackers to take more attack steps to reach the target state. 

The experimental hardware configuration includes an Intel i9-7980XE CPU, 128GB of memory, and the Windows 10 
operating system. The algorithm program is written in Python. The hyperparameter values for the three experimental scenarios 
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are shown in Table 1. 

Table 1: The settings of the lower points of different experimental scenarios 

 MAX_STEPS MAX_EP_STEPS EXPLORATION_STEPS START_STEPS REPLAY_SIZE 
Scenario 1 80000 400 8000 3000 8000 
Scenario 2 80000 800 40000 6000 8000 
Scenario 3 120000 4000 65000 6000 15000 

 
V. A. 1) Operating time 
First, we compare the DDQN algorithm and Dueling_DDQN. The DDQN algorithm with path heuristic information is denoted 
as H_DDQN, and the algorithm proposed in this paper is denoted as MASK-SALT-DQN. Experiments are conducted under 
consistent hyperparameter and environment settings. All four algorithms eventually converge to the optimal environment 
reward value. The time changes during the execution of each algorithm in the three scenarios are shown in Figure 2. 

From the experimental results in Scenario 1, it can be seen that under small-scale experimental conditions, the runtime of 
the DDQN and Dueling_DDQN algorithms is similar, while the runtime of the H_DDQN and MASK-SALT-DQN algorithms 
is similar, both significantly outperforming the first two algorithms, indicating that the proposed algorithm can improve the 
agent's learning speed. 

From the experimental results in Scenario 2, it can be seen that after the network scale is expanded, the Dueling_DDQN 
algorithm experiences rapid runtime growth and slow convergence in test environments with large state spaces. The MASK-
SALT-DQN algorithm has the fastest runtime, with the time required to reach convergence being approximately 18 seconds. 

From the results of Scenario 3, it can be seen that the H_DDQN and MASK-SALT-DQN algorithms are more efficient in 
the learning process compared to the other two algorithms, and as the problem scale expands, the improvement of the MASK-
SALT-DQN algorithm compared to other algorithms becomes more pronounced. 

  
(a) Running time in scenario 1 (b) Running time in scenario 2 

 

(c) Running time in scenario 3 

Figure 2: Four algorithm training process running time 
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V. A. 2) Detection Success Rate and Defense Success Rate 
Design a penetration testing scenario for simulation. In addition to the attacker, there are a total of five hosts in the network, 
two of which are servers. The server in LAN1 provides web services, while the server in LAN2 provides file services. The 
attacker's goal is to obtain root privileges on the file server in LAN2. The attacker has root privileges on their own host. 

Next, based on the above network connection and host configuration information, we will outline the actions taken by the 
attacker and the defender. The relevant action information of the attacker and the defender, the attacker action number A1~A7, 
the defender action number D1~D10, define the asset values for different asset attributes of the network entity, the asset values 
of the web server and the file server are (20, 10, 10, 20, 30) and (20, 30, 10, 30, 10, 10, 20), and the rest of the hosts are (10, 
10, 10, 10, 10, 10). Regarding the importance of network entities within the network, two servers are set to 4, and the remaining 
servers are set to 2. The preference values for different assets are set to (0,1,1,1,1,1) and (1,1,0,1,1,1) for the attacking and 
defending sides, respectively. The detection success rate and defense success rate after detection of the algorithm in this paper 
are shown in Table 2. 

Table 2: Test success rate and test success rate 

 d1 d2 d3 d4 d5 d6 d7 d8 d9 d10 dj 
A1 0.78 0 0 0 0 0 0 0.88 0 0 0.8 
A2 0 0.96 0 0 0 0 0.12 0 0.24 0 0.7 
A3 0.06 0.14 0.82 0.47 0 0 0 0 0 0 0.4 
A4 0 0.2 0.07 0.75 0 0 0 0 0.18 0 0.5 
A5 0 0 0.33 0 0.78 0 0 0 0.13 0 0.3 
A6 0.15 0 0 0.28 0 0.72 0.86 0 0 0 0.8 
A7 0 0 0 0.16 0 0 0 0 0.83 0.92 0.6 

 
Calculate the offensive and defensive utility of the attacker and defender in each action round. The results are shown in 

Tables 3 and 4. Assuming there are two attack paths, A1 and A2, the defender has 12 possible defensive strategies, denoted 
as D1 to D12. 

Next, the optimal attack and defense strategies are selected using the expected utility matrix under pure strategies. From the 
above settings, it can be seen that the attack action a2 used in the second attack path has a lower cost, while the corresponding 
defense action d2 has a higher defense cost, making the second attack path more feasible than the first attack path. This 
indicates that the attack path evaluation method proposed in this paper is reasonable and can provide a relatively accurate 
evaluation criterion for the attacker's path planning results. 

Table 3: Attack returns 

 d1 d2 d3 d4 d5 d6 d7 d8 d9 d10 
a1 -45.25 -4 -4 -4 -4 -4 -4 -52.47 -4 -4 
a2 5 -44.12 5 5 5 5 -1.25 5 -12.04 5 
a3 28.63 27.46 13.56 21.17 32 32 32 32 32 32 
a4 -25 -30.42 -26.84 -48.52 -25 -25 -25 -25 -32.06 -25 
a5 150 150 135.22 150 115.42 150 150 150 142.67 150 
a6 28.54 32 32 22.63 32 3.48 -2.55 32 32 32 
a7 205 205 205 184.23 205 205 205 205 105.52 92.78 

Table 4: Defensive returns 

 d1 d2 d3 d4 d5 d6 d7 d8 d9 d10 
a1 30.4 -84 -18 -36 -55 -18 -55 3 -18 -36 
a2 -18 -12 -18 -36 -55 -18 -50 -55 82.6 -36 
a3 -16.2 -85 5 -25.3 -55 -18 -55 -55 -18 -36 
a4 -18 -78 -15 2 -55 -18 -55 -55 30.6 -36 
a5 -18 -84 -12 -36 5 -18 -55 -55 -12.2 -36 
a6 -10.5 -84 -18 -20.2 -55 32 682.6 -55 -18 -36 
a7 -18 -84 -18 -30.5 -55 -18 -55 -55 152 155 
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V. B. Algorithm Hyperparameter Analysis 
For the penetration testing learning algorithm described in this paper, when the discount factor γ is set to 0.99 and the learning 
step size α is set to 0.01, 0.05, and 0.1, respectively, the returns obtained are shown in Figure 3. The vertical axis represents 
the returns obtained by the algorithm in each round, and the horizontal axis represents the number of training rounds. All 
figures in this section are set up in the same way. Although the algorithm converges stably in all three cases, there are subtle 
differences. When α = 0.05 and α = 0.1, the distribution of return values in later training rounds is closer to 17. When α = 
0.01, the fitted curve is smoother, and the convergence is better than when α = 0.05 and α = 0.1. 

 

Figure 3: Learning curve 

Using the Nature DQN algorithm as a comparison method, we analyze the impact of batch size on the learning performance 
of the penetration testing learning algorithm based on Nature DQN. At this point, the learning step size α is set to 0.01, the 
discount factor γ is set to 0.95, and the update frequency is set to update the target Q network every 15 iterations. Then, the 
batch size is sequentially set to 128, 256, and 512. As the batch size increases, the learning curve of the algorithm gradually 
rises. However, when the batch size is 512, the algorithm does not converge stably. 

To analyze the impact of learning step size on the learning performance of the penetration testing learning algorithm based 
on Nature DQN. At this point, the batch size is set to 128, the discount factor γ is set to 0.95, and the update frequency is set 
to update the target Q-network every 15 rounds. Then, the learning step size α is set to 0.01 and 0.001, respectively. By 
comparing the results, it can be seen that the learning performance of the algorithm with a learning step size of 0.01 is superior 
to that with a learning step size of 0.001. 

To analyze the impact of the discount factor size on the learning performance of the penetration testing learning algorithm 
based on Nature DQN. At this point, the batch size is set to 512, the update frequency is set to update the target Q-network 
every 15 rounds, and the learning step size α is set to 0.01. Then, the discount factor γ is set to 0.85 and 0.99, respectively. 
The learning curves corresponding to these two cases are shown in Figure 4. By comparison, it can be seen that when the 
discount factor is close to 1, the learning performance of the algorithm decreases. 

 

Figure 4: Learning curve when γ=0.85, 0.99 
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In summary, for the penetration testing learning algorithm based on Nature DQN, to achieve high learning efficiency, the 
update frequency should be set to 15, the batch size to 256, the learning step size to 0.01, and the discount factor to 0.95. 

When comparing the penetration testing learning algorithm proposed in this paper with the penetration testing learning 
algorithm based on Nature DQN, the former exhibits a higher convergence value in its learning curve, while the latter shows 
signs of non-convergence toward the end of training. 

VI. Conclusion 
This paper applies deep reinforcement learning algorithms to automated penetration testing, performing path planning and 
optimization for supply and defense paths. Through experiments, the performance and hyperparameters of the deep 
reinforcement learning algorithms proposed in this paper are analyzed. 

In three scenarios, the runtime of the MASK-SALT-DQN algorithm proposed in this paper is shorter than that of other 
algorithms, improving the learning speed of the agent. The second attack path planned in this paper is more feasible, and the 
attack path evaluation method is reasonable, providing an accurate standard for assessing attack path planning results. When 
the discount factor γ = 0.99 and α = 0.05, the fitted curve is relatively stable, with better convergence. The convergence value 
of the learning curve for the MASK-SALT-DQN penetration testing learning algorithm in this paper is higher than that of the 
penetration testing learning algorithm based on Nature DQN.  
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