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Abstract Urban management issues have become a significant challenge for urban administrators, and urban management 
must be based on modern computer technology and network communication environments. This paper investigates object-
oriented building extraction methods, proposes a semi-global filtering method based on region growing for filtering remote 
sensing data, and then presents building 3D modeling methods and rendering methods in 3D remote sensing image modeling 
scenarios. In error comparison experiments between the classical TIN filtering algorithm and the proposed filtering method, 
the improved algorithm demonstrates superior performance, accurately identifying ground points at terrain steep changes, 
complex buildings, and complex roads. Its Type I error and total error are significantly lower than those of the classical TIN 
point cloud filtering algorithm, thereby demonstrating the superiority of the proposed improved algorithm. 
 
Index Terms semi-global filtering method, 3D remote sensing, 3D modeling, urban management 

I. Introduction 
In today's world, big data is widely applied and has made significant contributions to the development of various fields. 
Meanwhile, the development of digital urban management also relies on big data to accelerate the pace of smart city 
construction [1], [2]. The advent of the big data era has transformed the traditional urban management system, enhancing 
urban management standards and improving the efficiency of addressing urban issues [3]. From everyday aspects of people's 
lives, such as clothing, food, housing, and transportation, to government decision-making and services, big data plays a pivotal 
role, making the construction of smart cities possible [4], [5]. Digital urban management not only embodies the implementation 
of the scientific development concept and promotes the construction of a harmonious society but also enhances the efficiency 
of government public management and increases public awareness of participation in urban management [6]-[9]. Therefore, 
researching big data smart applications for urban management holds significant importance. 

In the era of big data, digital urban management requires managers to analyze more detailed data and phenomena, extract 
potential value information from them, and apply this information to urban planning [10]-[12]. Therefore, the more detailed 
the data, the better, and remote sensing big data technology can meet this requirement. Remote sensing big data technology 
offers advantages such as high resolution in terms of spatial, spectral, and temporal aspects [13]. For example, high spatial 
resolution corresponds to geographic spatial information elements. By leveraging this data, managers can promptly understand 
the detailed changes in urban management elements [14], [15]. Spectral information primarily refers to chlorophyll content, 
surface reflectance, etc. Managers can use this data to monitor the growth status and nutritional needs of urban vegetation 
[16]-[18]. Additionally, the high temporal resolution enables managers to quickly understand the historical development 
process of an entire city, meaning they can grasp the sequencing of urban planning and construction, identify changes in 
various elements, and ultimately develop refined management plans based on planning outcomes [19]-[22]. Therefore, urban 
intelligent comparison supported by remote sensing big data can provide comprehensive oversight for digital urban 
management applications. 

Remote sensing data can meet the requirements of detailed urban management. The high-resolution remote sensing images 
it provides can clearly reflect relatively small details such as the structure, shape, and texture of ground features, thereby 
satisfying the requirements of element management. Literature [23] indicates that remote sensing data provides a rich source 
of data for studying the dynamic changes in urban landscapes. By utilizing real-time data to model, simulate, and predict 
urban development, it provides valuable information for urban planning by management personnel. Reference [24] discusses 
the processing and application of remote sensing big data technology in urban fine-grained management. Remote sensing big 
data technology enhances information coordination capabilities among urban departments and improves the level of intelligent 
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urban management, providing a technical basis for the construction of smart cities. Reference [25] investigated the feasibility 
of using remote sensing data and geospatial integrated data for urban research. The study demonstrated that the integrated data 
exhibits extremely high efficiency and complementarity, effectively reflecting the dynamic activities and economic 
characteristics within cities. Reference [26] emphasized the importance of land use information for urban planning and 
management. Different integration methods of remote sensing and geospatial data exhibit varying performance in expressing 
urban land use classifications, providing a deeper understanding for urban land use mapping. Reference [27] studied the 
integrated application of urban remote sensing data and social media data, which can accurately determine the accessibility of 
urban services and infrastructure, and is of great significance for optimizing urban management and promoting urban expansion. 
It is not difficult to see that remote sensing big data technology can transform urban management from extensive to intensive, 
which is more in line with the requirements of modern urban management. 

Currently, cities across the country have accumulated a certain amount of comprehensive management data in the digital 
urban management applications of the big data era. However, there is significant research potential in how to utilize this data 
to achieve true smart, big data-driven urban management. Literature [28] evaluated intelligent technologies involved in 
analyzing remote sensing and geospatial data sources, finding that the combination of artificial intelligence and geospatial data 
can effectively enhance monitoring and management capabilities of regions, thereby providing effective support for regional 
management decision-making. Literature [29] utilizes spatio-temporal data fusion and deep learning methods to integrate 
high-resolution remote sensing data with other relevant information. This data-driven technology maintains high predictive 
capabilities even in the face of complex and dynamic urban changes, driving urban management toward sustainable 
development. Literature [30] proposes a novel time-series large-scale mapping method for precise land cover mapping in 
cities. By fully utilizing spectral and textural features from remote sensing data for comparative analysis, the land mapping 
results achieve high reliability and superiority, providing effective decision-making basis for urban planning and management. 
Although the aforementioned studies have successfully conducted in-depth mining and analysis of remote sensing big data, 
they lack consideration of its application in real-world scenarios. Remote sensing big data-driven 3D modeling methods have 
significant advantages in this regard and will drive the rapid development of smart city management. 

The article first proposes an object-oriented building extraction method, which performs multi-scale segmentation based 
on remote sensing big data and designs classification algorithms based on image features to extract buildings.  

II. Method 
II. A. Building extraction method 
II. A. 1) Object-oriented image analysis 
Extracting data for target categories requires not only designing features based on the target categories but also segmenting 
them according to the differences and adjacent relationships between categories to reduce misclassification and omission. 
Object-oriented image analysis methods can fully utilize image features to extract information through object-based 
segmentation and classification. The quality of image segmentation directly impacts the classification effectiveness of the 
segmented objects. The internal features of objects formed through image segmentation exhibit a certain degree of consistency. 
The classification of information extraction requires the design and selection of appropriate classification features, and the 
establishment of suitable classification thresholds based on attribute feature differences to classify the segmented objects. 
Segmentation and classification primarily utilize the spectral, geometric, and textural features of images to group pixels with 
similar features into individual objects, and then classify them based on image features and perform other image analyses. 

Image segmentation transforms images from individual pixels into independent entity units. Depending on the segmentation 
method, it is categorized into edge segmentation and region segmentation. Edge segmentation detects the edges of adjacent 
objects through gray-level transition points, connects edge points or lines to form closed contours, while region segmentation 
includes region splitting and region growing methods, which split or merge pixels into different segmentation units based on 
their feature similarities. Multi-scale segmentation is a segmentation method based on the principles of region growth and 
merging, and it is currently the mainstream method for image segmentation. 

 
II. A. 2) Deep Learning Semantic Segmentation 
Semantic segmentation is a classic digital image processing method that can divide an image into regions with different 
semantic meanings. Through feature extraction and inference operations from low-level to high-level, all pixels in the image 
are semantically annotated [31]. The following introduces the UNet semantic segmentation model and model optimization 
strategies. 

(1) UNet Symmetric Semantic Segmentation Model 
The UNet network model is widely used in medical image segmentation, and experiments have shown that it can also 

achieve good results in remote sensing image segmentation. This network has a U-shaped symmetric structure, with the left 
side being the contraction path for feature extraction and the right side being the symmetric restoration path for upsampling. 
The feature extraction component primarily obtains feature maps at different levels through convolution and pooling, then uses 
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upsampling to generate feature maps corresponding to each layer of feature extraction. Through skip connections and feature 
integration, the channel counts of the corresponding feature maps are combined, ensuring that the final output not only retains 
contextual information from the extracted features but also accurately preserves spatial information [32]. During model training, 
image cropping is employed to consider the multi-scale features of the research object while also performing data 
augmentation to obtain an adequate dataset, thereby enhancing the robustness of the training results. 

(2) Model optimization 
The primary data extracted for building usage in this study are DEM and digital surface model (DSM). The original image 

labels are obtained through human-computer interaction using geographic processing software. Subsequently, the generated 
four-band image map and corresponding labels are used to produce a sample dataset and perform preprocessing. To prevent 
memory overflow during training, the original images were first cropped using a sliding window and rotated to a 256×256 size 
sample dataset. Then, data augmentation, image normalization, and label encoding preprocessing methods were applied. Data 
augmentation primarily uses geometric transformations and color transformations to expand the sample dataset. The 
transformed images enhance the model's generalization ability and reduce the risk of overfitting during training. The min-max 
normalization method, as shown in Formula (1), is used to limit the pixel value range through min-max normalization, 
effectively eliminating the impact of outlier samples and accelerating the convergence of network training. Labels are encoded 
using one-hot encoding, where each category of flat labels is converted into a layer composed of 0s and 1s. The augmented 
dataset with a capacity of 15,345 is randomly divided into training, validation, and test sets in a 6:2:2 ratio. 

 min

max min

x x
x

x x

 


 (1) 

where minx  is the minimum value of the sample data, and maxx  is the maximum value of the sample data. 
This paper comprehensively utilizes features of different scales and depths through feature integration, using corresponding 

methods to complement different features to increase feature diversity. Model optimization is based on the U-net network 
structure. First, the input image dimensions are adjusted to 4 dimensions, and the kernel function dimensions of each layer are 
reduced by half to reduce the computational load. Next, the feature extraction and integration process is optimized, using the 
cross-entropy loss function to evaluate the loss of the current prediction results, as expressed in Formula (2), and selecting 
the Adam optimizer for backward propagation to update the model parameters. 
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where S is the image size, iy  is the true pixel value, and iy  is the predicted pixel value. 
 
II. A. 3) Object-oriented method for extracting buildings 
The study area contains a large number of buildings, green spaces, farmland, and water bodies. A comparative analysis of 
different land cover features reveals that buildings typically have higher elevations and more regular shapes. However, due to 
the variety of roof materials and colors, they exhibit irregular spectral characteristics. Using EasyMap software, remote sensing 
data was imported, and a process tree was created to write a rule set for gradually extracting buildings. First, the imagery was 
subjected to multi-scale segmentation, with a scale set to 26, shape and compactness weights of 0.2 and 0.3 respectively, and 
an elevation mean range set to greater than or equal to 7. The algorithm classified building objects by setting the threshold 
condition to Mean DSM ≥ 7, and the category was designated as the building category. 

Reviewing the classification results, it was found that some tall trees were also classified as buildings based on elevation. 
The gaps between trees caused uneven elevation data, resulting in wavy textures on the DSM image, while building objects 
had relatively uniform elevation. Therefore, trees and buildings could be preliminarily separated using elevation variance. The 
classification algorithm was used to remove objects with DSM variance ≥ 6 from the building category. After separation, some 
trees with fewer gaps between leaves and smaller elevation variances remain. These trees are more lush, resulting in relatively 
higher reflectance values in the green band. The green leaf index can be used to further separate trees from buildings. The 
custom green leaf index is defined by Formula (3), adjusted to an appropriate range, and the classification algorithm is applied 
again to separate the filtered vegetation from the building category. 

 (( ) ( ))
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Among them, R, G, and B represent the red, green, and blue wavelengths, respectively. 
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II. B. Three-dimensional modeling methods for buildings 
II. B. 1) Semi-global filtering method based on regional growth 
In this study, the specific implementation method involves filtering out other objects such as buildings and vegetation from 
the DSM data, i.e., DSM filtering. The preparatory work for filtering involves dividing the DSM data into blocks, obtaining 
block DSM data, and using the block DSM data as input data to complete the algorithm [33]. The algorithm technical route is 
shown in Figure 1. 

The DSM of the entire study area

Divide the global DSM into blocks by 
blocks and calculate the standard variance 

Si(B) of each independent block DSM

Continuously and non-repeatedly traverse 
the block DSM data using window W, 

and calculate the standard variance Si(W) 
of the DSM data within the window.

If Si(W)>0.6Si(B), then seed 
points are selected in this 

window, and the set of selected 
seed points is called G
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Figure 1: Flowchart of the DSM filtering algorithm 

The steps for implementing DSM data filtering are as follows: 
(1) Automatic selection of ground seed points first requires determining a square window W, where the size of window W 

must be larger than the average size of objects in the DSM data block. In this experiment, the selected size is 50×50. The 
automatic selection of seed points involves moving window W continuously and non-repeatedly across the DSM data block. 
If all pixels within window W satisfy formula (4), they are considered seed points. However, sometimes window W may 
completely cover a building or a flat terrain. In such cases, the former has no seed points, and the latter does not require seed 
points. This is because the former is an intact building, and the latter is relatively flat terrain, both of which can be identified 
through the growth operation of ground pixels in the surrounding window. To avoid errors caused by these two situations, the 
algorithm specifies that seed points can only be found in window W when the standard deviation of all pixels within window 
W is greater than 0.6 times the standard deviation of all pixels in the block DSM data. 

 ( , ) min( ) ( )W i j W level W   (4) 

In equation (4), W(i, j) is the pixel point located at (i, j) in the window. min(W) is the minimum value in the current window 
W. The formula for level(W) is as follows: 

 [ ( ) min( )]
( )

gt W W
level W

t


  (5) 

In equation (5), gt(W) represents the threshold corresponding to the maximum interclass variance method in window W. t 
is a constant coefficient, and the value of level(W) changes with the window W. When the standard deviation of all pixels in 
window W is large, it indicates that window W is in a region with a steep slope. In this case, gt(W) will take a large value, 
and level(W) will also be relatively large. This allows for the selection of as many seed points as possible while ensuring the 
quality of the seed points. Therefore, the value of the threshold level(W) can ensure the adaptive selection of seed points in 
both flat and complex terrain regions. 

(2) Adaptive selection of growth criteria and termination conditions 
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The growth process of the seed points automatically selected in the previous step is completed in each independent DSM 
data block. The growth criteria and termination conditions for regional growth in this experiment are as follows: 

 
( , ) | ( , ) ( , ) | ( )( , )

( , ) { 1,0,1}, { 1,0,1}

i j DSM S i j DSM i m j n level B i m j n DSM

i m j n G m n

       
       

 (6) 

In equation (6), S(i, j) represents a seed point or a newly identified ground point during the growth process. Although 
level(B) is identical to equation (6), its range of values has changed: G is the set of ground seed points selected in the previous 
step. When the terrain around the seed points in set G is relatively flat, the elevation difference between the seed point and its 
adjacent ground points is relatively small. In this case, level(B) should take a smaller value; otherwise, excessive growth 
spread may occur, leading to an increased proportion of non-ground points among the extracted seed points and thereby 
increasing the error in the final results. The formula for level(B) is as follows: 

 [ ( ) min( )]
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gt B B
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t


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(3) Interpolation method 
Regional growth can be used to obtain some ground point elevation information. However, this elevation information is not 

the actual elevation value of the ground. Due to the stringent growth criteria, the number of ground points selected in the above 
experimental process is limited. Therefore, to utilize this limited ground point elevation information to obtain DEM data, it is 
necessary to select an appropriate interpolation method. The interpolation method used in this study is the inverse distance 
weighted interpolation method (IDW). The principle of IDW is to determine the value of the interpolation point based on the 
inverse of the distance between the interpolation point and the sample points, i.e., the farther the interpolation point is from 
the sample points, the smaller the influence, and vice versa. The formula is as follows: 
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Among them, ( , )f x y  is the predicted value at coordinate point ( , )x y . iZ  is the measured value at ( , )x y . n is the 
number of sample points surrounding the prediction point participating in the interpolation. id  is the distance between the 
prediction point and each known sample point. k is the specified power, generally taken as 1-2. 

 
II. B. 2) Three-dimensional modeling of buildings 
(1) Building 3D Model Construction Algorithm 

Based on building contour and height information, the Extruder algorithm is used to achieve 3D visualization of the building. 
The Extruder algorithm process is as follows: 

(a) Determine the outer loop edges to be extruded, which will be extruded into faces. The algorithm considers edges 
belonging to two or more selected faces as inner edges and does not extrude them as part of the boundary loop. 

(b) Extrude the determined outer loop edges into faces. 
(c) If these loop edges belong to only one face in the entire mesh, all selected faces will be copied and connected to the 

newly created faces. 
(d) If these loop edges belong to two or more faces, the selected faces will be connected to the newly created faces but will 

not be copied. This prevents unwanted faces from being created inside the mesh. This distinction is very important, as it 
ensures that the mesh structure produced by extrusion remains well-organized and closed. 

(f) Edges that do not belong to the selected faces and form open loop edges will be copied during extrusion and connected 
to the original edges to form new faces. 

(g) Isolated vertices that do not belong to the selected edges will be copied during extrusion and connected to the original 
vertices to form new edges. 

(2) Methods for connecting buildings to terrain 
Due to the undulations of the terrain surface, overlaying buildings onto a 3D terrain model may result in floating or sunken 

states. Based on input points and boundary lines, a Delaunay triangulation is constructed, and the input overhang features are 
overlaid onto the surface model. By overlaying buildings onto the terrain model, the minimum values of the corner points 
corresponding to the building's base contour are extracted. The lowest value among these minimums is selected as the building's 
base height, achieving the goal of flattening the building's base height. Based on this, using building height information and 
the Extruder algorithm, the overlay of 3D buildings onto terrain is realized. 
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(3) 3D modeling of building roofs 
Building roof information cannot be directly obtained from the building vector data of the housing census. For the 

classification of building roofs, it is necessary to rely on the digital orthophoto imagery of the region. 
Complex building models refer to buildings where adjacent structures are interconnected, and the building shapes are often 

irregular or have complex geometric forms. In actual modeling processes, the available parameters for complex building 
models are limited, making it difficult to achieve a fully accurate representation. Therefore, this study focuses on constructing 
simple building models and partial complex building models. The 3D building model construction process is illustrated in 
Figure 2. 

Connect the bottom surface of 
the building with the terrain

3D model texture rendering

Complete the construction of the three-
dimensional model of the building

Terrain texture 
rendering

Architectural 
texture rendering

Building vectors with height information

Build a three-dimensional model of the 
building based on the Extruder algorithm

Complete the three-dimensional 
visualization of flat-roof buildings

Obtain information on pitched roof 
buildings

The roof modeling of pitched roof buildings 
is completed through the CSG algorithm

Superimpose the model of the building's 
wall

Complete the three-dimensional 
visualization of the pitched roof building

 

Figure 2: Flowchart for constructing a three-dimensional model of a building 

II. B. 3) Potential Applications of Three-Dimensional Models of Buildings 
The modeling objects of CIM primarily encompass three categories: urban buildings, infrastructure, and resource and 
environmental elements. Due to the scalability differences in CIM representation, the national, provincial, and municipal levels 
of CIM adopt a hierarchical construction approach. When representing object elements in CIM, it is necessary to consider 
different levels of detail in the model to accommodate the construction of CIM applications across various scales and scenarios. 
This means that during model data creation, data governance software suitable for CIM processing and handling should be 
used to achieve hierarchical and categorized construction of CIM. In CIM, the expression precision of each element is 
categorized into seven levels, with Level 1 being the least detailed and Level 7 being the most detailed. 
 
II. C. Research on 3D remote sensing image rendering 
II. C. 1) Physical simulation rendering model for remote sensing image modeling scenarios 
In the construction of the diffuse BRDF, this paper employs the Lambert Diffuse model. In experiments conducted within the 
Unreal4 graphics engine rendering pipeline, this model achieves real-time diffuse rendering while maintaining the authenticity 
of rendering details, thereby reducing computational overhead in the rendering pipeline, while also meeting the requirements 
for PBR rendering effects. 

 0( , ) /difff l v F   (9) 
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In equation (9), difff  is the surface diffuse reflection component in the BRDF. Its input parameters l  represent the light 
source direction and v  represents the observation direction. 0F  is the surface reflectance of the rendered object, whose value 
is determined by the material's inherent reflective properties. In the PBR pipeline described in this paper, this data is calculated 
using two parameters, ,m s  , and the surface color parameter basec . Among these, m  is the metallicity of the material 
surface, which represents the probability of photons being reflected off the material surface in the PBR rendering model. s  
is the specularity, used to describe the basic reflective characteristics of the material surface. Meanwhile, basec  is often derived 
from the texture mapping process in the rendering pipeline, used to describe the base color of the material. Under the combined 
influence of the above three factors, the surface reflectance 0F   of an object can be expressed as in equation (10). The 
parameter 0  in the equation is a fixed value introduced for the convenience of adjusting s  and is only related to the 
internal settings of the rendering pipeline. 

 0 0 (1 )base m s mF C          (10) 

Compared to diffuse reflection, the calculation of the specular reflection BRDF term specf  is more complex. This process 
requires comprehensive consideration of the effects of factors such as light, angle, and surface material on the rendering 
process. The rendering process can be abstracted as follows: 

 ( , ) ( , ) ( , , ) ( ) / (4( )( ))specf l v F v h G l v h D h n l n v    (11) 

In the above equation, n  represents the normal direction of the grid model surface, while h  represents the micro-normal 
direction in the Cook-Torrance micro-surface model. In most cases, this value can be calculated based on the relationship 
between the light source direction and the observation direction. When selecting a normal distribution function ( )D h , the 
GGX model is widely recognized in the industry. In this model, the parameter r  is used to characterize the roughness of the 
material surface. When the normal direction n  and micro-normal direction h  are known, the model can be expressed as: 

 1 4 2 4 2( ) (( ) ( 1) 1)GGX r rD h n h        (12) 

For the Fresnel effect function ( , )F v h , the Fresnel approximation method proposed by Schlick et al. is generally used in 
the field of computer graphics. This method uses the surface reflectance 0F  to simulate the Fresnel effect in the actual light 
propagation process, which is mathematically expressed as equation (13): 

 5
0 0( , ) (1 )(1 ( ))SchlickF v h F F v h      (13) 

However, in practical applications, since equation (13) requires multiple power operations, it can have a certain performance 
impact in real-time rendering. Therefore, in rendering environments that emphasize real-time performance, such as Unreal4, 
equivalent Fresnel calculation methods within the value range are often used. For example, the spherical Gaussian 
approximation method used in RealShading, as expressed in equation (14): 

 ( 5 55473( ) 6.98316)( )
0 0( , ) (1 ) 2 v h v h

SGAF v h F F          (14) 

For the calculation of the geometric attenuation factor ( , , )G l v h , there are numerous different calculation methods in the 
industry, with the most mainstream being the calculation method based on separated occlusion shadows. This method assumes 
that the incident and reflective surfaces have the same effect on the light reflection attenuation process, allowing the symmetry 
to be directly utilized to derive the expression for ( , , )G l v h  using ( )D h  and the geometric shadow function. For example, 
the Schlick-GGX method used in RealShading: 

 1 1( , , ) ( ) ( )S GGXG l v h G l G v   (15) 

Among them: 

 1( ) / (( )(1 ) )G v n v n v k k      (16) 

The k  term in the equation reflects the attenuation effect of the material surface on incident light, which is positively 
correlated with surface roughness. In the Schlick-GGX model, it is defined as the exponential model expressed by the equation: 

 20.125( 1)rk    (17) 

This allows us to construct the reflection parameter portion related to the material itself in a traditional PBR model, i.e., the 
rf  term in the equation. In actual PBR rendering, we also need to consider the impact of ambient lighting in the scene on the 

rendering results. In the construction of ambient lighting BRDF, the industry-standard method is image-based lighting (IBL) 
algorithms, whose main model is shown in the equation: 
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 
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The double integral term in the equation represents the effect of light rays caused by the ambient light centered at point p  
in the illumination space with spherical distribution of zenith angle   and azimuth angle  . 

 
II. C. 2) Compression parameter texture atlas input level model 
Based on the TAG texture atlas region generated by the PCG algorithm, the parameter information required for PBR rendering 
is packaged in a color information unit parac  in the form of color data channel component intensity in order of , ,m s r   , 
thereby compressing and recording the rendering parameters for that location. The texture atlas is compressed using a channel 
separation-merging method, as shown in Figure 3. 
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Figure 3: Compress the texture atlas using the channel separation and merging method 

Following the TAG input-level model structure described above, two construction methods for the TACP input-level model 
are presented. The internal structure of the separated texture-type compressed parameter texture atlas input-level model is 
shown in Figure 4. The internal structure of the merged texture-type compressed parameter texture atlas input-level model is 
shown in Figure 5. 
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Figure 4: Separation texture-type compression parameter texture atlas input-level model 
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Figure 5: Merge textured compression parameter texture atlas input model 
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II. C. 3) Building Dynamic Radiation Rendering Model 
In some scenarios, lighting does not come from external light sources, but from the rendered building components themselves. 
Therefore, in these scenarios, it is not enough to use only BRDF models based on reflected light; calculations based on light 
emitted by light sources must also be included. In this case, the original BRDF model based on the principle of conservation 
of reflected energy can be expanded into a model that obeys the reflection-radiation dual system, as shown in Equation (19): 

 ( , ) ( , ) ( , , ) ( , )( )o o e o r i o i i i iL p L p f p L p n d      


    (19) 

This paper uses the point source radiation energy equation as the radiation emission term for position p  in the BRDF 
model: 

 ( ) ( )e emif p C I t   (20) 

In the equation, the term emic  represents a radiation reference color derived from an independent input, which determines 
the emission spectrum of the radiation light. ( )I t  is a radiation intensity decay control term used to adjust the radiation 
intensity of self-luminous components on the building. For purely static rendering scenes, this term can be set to a constant 
value. This paper employs a time-varying dynamic attenuation function ( , , )T t   to simulate dynamic light sources in the 
scene, with the model expressed as: 

 ( ) ( )e emi i

t
f p C T 


     (21) 

The feature term i  in the equation represents the static intensity adjustment value obtained from the input stage of the 
rendering pipeline, while in the dynamic attenuation term ( , , )T t  , t  is a time variable from the GPU, whose value changes 
with the hardware device time, and   and   are the frequency control parameter and phase control parameter that control 
the dynamic attenuation effect, respectively. 

 
II. C. 4) Pipeline structure for stylized rendering of three-dimensional remote sensing modeling scenes 
This paper achieves the objective of improving the traditional rendering pipeline. The new PBR pipeline is suitable for 
rendering in three-dimensional remote sensing image modeling scenarios. Based on this rendering pipeline structure, direct 
associations can be established between various elements in the PBR rendering model and stylized 3D-PCG methods, thereby 
deriving the relationship model between each rendering component in this PBR pipeline and the results generated by the 3D-
PCG algorithm for buildings within the remote sensing scene. As described in the preceding sections regarding the sampling 
process and parameter mixing process, the rendering parameter acquisition process for this rendering pipeline can be expressed 
as Equation (22): 

 ' '
3( , , ) ( )[ ,0]T

base emi para L L L vtcC C C S diag S S E C    (22) 

In the equation, vtcc  represents the position coordinates of the vertex, Ls  and LS
  are the results of the main texture 

sampling process and the stylized texture sampling process, respectively. If the texture offset matrices corresponding to each 
data item in the input layer are denoted as , ,base emiM M   and paraM  , the main texture sampling process is denoted as 

( , ),x UVs M C  and the stylized texture sampling process is denoted as ( , )x UVs M C  , then LS  and LS
  can be expressed as 

in equation (23): 

 
( , ) ( , )

( , ) , ( , )

( , ) ( , )

base UV base UV

L emi UV L emi UV

para UV para UV

s M C s M C

S s M C S s M C

s M C s M C


   
       
      

 (23) 

Based on this, the expressions for the various BRDF parameters in this PBR pipeline can be obtained. According to the 
parameter separation method in the aforementioned TACP model and the parameter acquisition results of the rendering pipeline, 
the calculation process for surface reflectance can be expressed as Equation (24): 

 0 1 0 2 1(1 )T T T
base para para paraF C e C e C e C      (24) 

The Fresnel effect function represented by equation (25) can be directly obtained from the value of oF : 

 5
0 0( , ) (1 )(1 ( ))SchlickF v h F F v h      (25) 



Construction of a remote sensing big data-driven 3D modeling method for urban management 

270 

For the normal distribution function and geometric attenuation function, it is necessary to calculate the surface roughness 
parameter r . Based on the generation process of parac  and the order of its parameters, this parameter can be obtained 
through matrix multiplication, thereby deriving the expression for the normal distribution function, as shown in Equation (26): 

 1 4 2 4 2
3 3( ) ( ) / (( ) (( ) 1) 1)T T

GGX para paraD h e C n h e C      (26) 

Similarly, the expression for the single-surface attenuation parameter k   in the geometric attenuation function can be 
obtained by the parac  operation in a similar manner, as shown in the equation: 

 2
30.125( 1)T

parak e C   (27) 

Similarly, based on the dynamic radiation BRDF model established by the formula, we can construct its radiation light 
rendering model expression under the rendering pipeline described in this paper: 

 1
4( ) sin(( ( , )) ( , ))T

e emi vtc UV UVf p C e C s M C t s M C 
     (28) 

III. Results and Discussion 
III. A. Filter testing and algorithm performance evaluation 
III. A. 1) Preparation of test data 
(1) Experimental data 

The experimental dataset consists of airborne LiDAR point cloud data from Vaihingen/Enz and Stuttgart, comprising seven 
sets of point cloud data from CSite1 to CStite7. Among these, Site1 to Site4 are urban area data with point spacings ranging 
from 0.8 to 1.7 m. Site5–Site7 are mountainous area data with point spacings ranging from 1.8 to 3.5 meters. The scene data 
include common terrain and features such as vegetation, bare ground, rivers, buildings, roads, railways, water bodies, bridges, 
and power lines. Additionally, 15 sample datasets were selected from the seven test scenes, with the characteristics of the test 
data summarized in Table 1. These sample datasets have been manually classified, with laser points precisely categorized into 
ground points and non-ground points. The 15 sample datasets broadly cover the primary challenges encountered in point cloud 
filtering, including the impact of coarse points, features connected to the ground, complex features, terrain discontinuities, 
vegetation on slopes, and low-lying vegetation, among others. 

Table 1: Description of the characteristics of the test data 

Test data Sample number Topographic features 

CSite1 
11 There are vegetation and buildings on the steep slopes 
12 More vehicles 

CSite2 

21 There is a bridge beam 
22 There is a bridge across the road 
23 Complex structure 
24 There are vegetation and steps on the steep slope 

CSite3 31 The shape and structure of the building are complex 

CSite4 
41 There is a large amount of data missing area 
42 There are large buildings 

CSite5 

51 There is vegetation on the slope 
52 Steep slope, low vegetation, ridge 
53 Staircase form 
54 Smaller buildings 

CSite6 61 Low vegetation 
CSite7 71 Above the surface of the surface 

 
(2) Selection of experimental parameters 
The experiments employed both the classical TIN filtering algorithm and the DSM filtering method. The classical TIN 

filtering algorithm requires six parameters: the maximum building size maxd , the steepest terrain slope angle max , the 
iteration angle k , the iteration distance dk , the reduced iteration angle side length KS   and the stop mesh side length stopS  
are required. In this experiment, the parameters KS   and stopS  were set to their default values, so only the first four 
parameters needed to be adjusted. In the DSM filtering method, a total of 9 parameters are required. In addition to the 
parameters of the classic TIN filtering algorithm, three additional parameters are needed to control the smooth surface 
segmentation of the point cloud, namely the number of neighboring points nearK , the normal vector angle difference threshold 
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T  and distance threshold dT  are added to control the segmentation of smooth surfaces in the point cloud. To facilitate 
algorithm comparison, the shared parameter values are the same for both algorithms in each group of scene experiments. The 
parameter values for each filtering parameter across the seven scenes are shown in Table 2. 

Table 2: Explanations of the parameter values of the two filtering algorithms 

Scene 
max ( )d m  

max ( ) 。  ( )k
。  ( )dk m  nearK  ( )T

。  ( )dT m  

CSite1 21 75 6 1.7 25 32 0.8 
CSite2 62 85 6 1.1 25 10 0.1 
CSite3 35 90 4 1.7 25 25 0.8 
CSite4 67 80 6 0.9 25 32 0.1 
CSite5 11 90 6 1.2 10 32 0.3 
CSite6 38 80 4 1.3 25 32 0 
CSite7 8 89 6 1.4 25 32 0 

 
III. A. 2) Analysis and evaluation of test results 
Evaluating the performance of a filtering algorithm involves not only assessing the accuracy of its filtering results based on 
visual effects but also using quantitative technical metrics to determine whether the results align with the actual terrain structure. 
While organizing evaluations of classical filtering algorithms, the ISPRS group also established error evaluation criteria for 
filtering results. In its evaluation report, filtering errors are categorized into three types: Type I errors, Type II errors, and total 
errors. Type I error, also known as underclassification error, refers to the error of incorrectly classifying ground points as non-
ground points. Type II error, also known as overclassification error, refers to the error of incorrectly classifying non-ground 
points as ground points. Total error refers to the proportion of all misclassified points out of the total number of points in the 
point cloud. 

The probabilities of Type I errors, Type II errors, and total errors are the primary indicators for evaluating the performance 
of a point cloud filtering algorithm. The purpose of filtering is to maximize the recovery of the true terrain, and the number of 
non-ground points contained in the ground points obtained after filtering should be as small as possible. Therefore, most 
filtering algorithms focus on reducing the occurrence of Type II errors, while Type I errors remain significant. However, when 
manually correcting filtering errors, modifying Type II errors is much easier than modifying Type I errors. Therefore, while 
reducing Type II errors, we should also focus on minimizing the occurrence of Type I errors. The filtering parameters used by 
the two filtering algorithms for the Samp11 data are shown in Table 3. The error statistics of the Samp11 filtering results are 
shown in Table 4. 

Table 3: Filtering parameters 

Points(pts) max ( )d m  max ( ) 。  ( )k
。  ( )dk m  nearK  ( )T

。  ( )dT m  

38015 21 75 6 1.7 25 32 0.8 

Table 4: Samp11 filtering error statistics 

Sample 
labeling 

Total points 
(pts) 

Select the ground 
point (pts) 

Filtering algorithm 
Type I error 

(100%) 
TypeⅡ error 

(100%) 
Total error 

(100%) 

Samp11 38015 18812 
Classic TIN filter 47.861 2.9855 30.2641 

DSM filtering method 26.053 6.5405 19.232 
 
Samp23 Data: The data features a sparse distribution of vegetation and buildings. Within the building clusters, there is a 

unique closed circular terrain feature characterized by artificial building boundaries, with terrain points both inside and outside 
the boundaries. This data can be used to test the algorithm's ability to identify complex building structures. From the DEM 
results, both filtering algorithms can remove large buildings, retain ground points within the circular structure, and remove 
buildings along the circular boundary. However, when considering the retention of terrain points around the circular structure, 
the DSM filtering method performs better, with the generated DEM being closer to the reference DEM. In terms of error 
distribution and quantity, the errors of both filtering algorithms are primarily Type I errors, and the errors are mainly distributed 
around the circular structure. However, the DSM filtering method has fewer Type I errors. Overall, despite the high complexity 
of this scene, the improved algorithm performs better than the classical algorithm in terms of filtering effectiveness. The 
filtering parameters used by both algorithms for the Samp11 data are shown in Table 5. The error statistics of the Samp23 
filtering results are shown in Table 6. 
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Table 5: Filter parameters for samp11 data by two filtering algorithms 

Points(pts) max ( )d m  max ( ) 。  ( )k
。  ( )dk m  nearK  ( )T

。  ( )dT m  

29115 62 85 6 1.1 25 10 0.1 

Table 6: Samp23 filtering error statistics 

Sample 
labeling 

Total 
points(pts) 

Select the ground 
point(pts) 

Filtering algorithm 
Type I 

error(100%) 
TypeⅡ 

error(100%) 
Total 

error(100%) 

Samp23 29115 6935 
Classic TIN filter 36.5017 4.9825 21.9953 

DSM filtering method 19.6478 3.9857 12.3582 
 
Samp42 data: This dataset has a high level of scene complexity, so 3D stereoscopic display was used here. Based on the 

number and distribution of errors, the errors from both filtering algorithms are primarily Type I errors, and they are mainly 
concentrated in the upper-right corner of the data. Additionally, both algorithms incorrectly retained some low-building points, 
but the DSM filtering method had fewer misclassified points. The filtering parameters for the two algorithms on the Samp42 
data are shown in Table 7. The error statistics for the Samp42 filtering results are shown in Table 8. 

Table 7: Filtering parameters of Samp42 data for two algorithms 

Points(pts) max ( )d m  max ( ) 。  ( )k
。  ( )dk m  nearK  ( )T

。  ( )dT m  

29115 67 80 6 0.9 25 32 0.1 

Table 8: Samp42 filtering error statistics 

Sample 
labeling 

Total 
points(pts) 

Select the ground 
point(pts) 

Filtering algorithm 
Type I 

error(100%) 
TypeⅡ 

error(100%) 
Total 

error(100%) 

Samp42 43261 9326 
Classic TIN filter 11.4587 1.4964 4.7498 

DSM filtering method 8.1893 0.6661 5.2666 
 
Samp53 data: The data features discontinuous terrain with numerous steep slopes and layered discontinuities. There is a 

small amount of low vegetation on the steep slopes, and no buildings are present. In terms of error counts, the DSM filtering 
method has significantly fewer misclassification points than the classical filtering method, with misclassification points 
primarily concentrated in Class II errors, while the classical algorithm's misclassification points are mainly concentrated in 
Class I errors. From the error distribution perspective, errors in the DSM filtering method are primarily concentrated in areas 
with smooth terrain changes, while errors in the classical algorithm are primarily concentrated in areas with abrupt terrain 
changes and fault structures. The DSM filtering method has fewer Type I errors, and Type II errors primarily occur at fault 
structures. The filtering parameters used are shown in Table 9. The error statistics for the Samp53 filtering results are shown 
in Table 10. 

Table 9: Filtering parameters of Samp53 data for two algorithms 

Points(pts) max ( )d m  max ( ) 。  ( )k
。  ( )dk m  nearK  ( )T

。  ( )dT m  

29115 11 90 6 1.2 10 32 0.3 

Table 10: Samp53 filtering error statistics 

Sample labeling Total points(pts) 
Select the ground 

point(pts) 
Filtering algorithm 

Type I 
error(100%) 

TypeⅡ error(100%) Total error(100%) 

Samp53 35621 28654 
Classic TIN filter 26.4043 2.2293 26.8879 

DSM filtering method 3.44 35.9745 5.7252 
 
Two point cloud filtering algorithms were applied to all 15 sets of sample data from IPSRS for filtering experiments, yielding 

error statistics for both algorithms. The error comparison between the two filtering algorithms is shown in Table 11. From the 
statistical results of the 15 sets in the table, it can be observed that both the classical TIN filtering algorithm and the DSM 
filtering method exhibit strong robustness and can be widely applied to filtering in various scenarios across urban and forest 
areas. Additionally, compared to the classic TIN point cloud filtering algorithm, the DSM filtering method performs better, 
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accurately identifying more ground points, especially in areas with steep terrain changes, complex buildings, and complex 
roadways. Its Type I error and total error are significantly lower than those of the classic TIN point cloud filtering algorithm. 

Table 11: Error comparison of two filtering algorithms 

Scene Error type Classic algorithm Improved algorithm Scene Error type Classic algorithm Improved algorithm 

Samp11 
I 47.861 26.053 

Samp42 
I 11.4587 8.1893 

II 2.9855 6.5405 II 1.4964 0.6661 
T 30.2641 19.232 T 4.7498 5.2666 

Samp12 
I 19.2147 8.1614 

Samp51 
I 4.4406 2.5625 

II 0.9997 4.6118 II 4.0287 8.03 
T 11.2496 5.06024 T 2.7364 3.7179 

Samp21 
I 0.4298 1.34361 

Samp52 
I 19.022 15.6357 

II 10.7339 17.8909 II 4.9763 7.9238 
T 1.5799 6.1252 T 14.9355 13.4742 

Samp22 
I 38.3099 19.6162 

Samp53 
I 26.4043 3.44 

II 3.6311 1.8983 II 2.2293 35.9745 
T 28.1676 15.8065 T 26.8879 5.7252 

Samp23 
I 36.5017 19.6478 

Samp54 
I 6.769 5.2134 

II 4.9825 3.9857 II 1.42741 5.819 
T 21.9953 12.3582 T 7.1716 5.4734 

Samp24 
I 38.9172 23.5445 

Samp61 
I 18.6128 17.0326 

II 12.8355 13.8022 II 4.7594 1.6014 
T 32.3749 20.7255 T 18.6443 15.5978 

Samp31 
I 5.8402 3.2739 

Samp71 
I 19.2563 10.4563 

II 3.0084 2.98 II 3.1247 12.8238 
T 3.944 3.3022 T 18.0669 11.6006 

Samp41 
I 60.9866 38.9762 

 
   

II 0.8067 1.4038    
T 31.3498 17.9483    

 
III. B. Model Accuracy Evaluation 
III. B. 1) Theoretical accuracy assessment 
(1) Image point accuracy of aerial triangulation densification 

Assuming that the correction values for the coordinates of the points to be determined are random variables, the variance-
covariance matrix of the coordinate correction values can be calculated using least squares adjustment, thereby determining 
the theoretical accuracy of the coordinates. The root mean square (RMS) of the image pixels can be used to evaluate the quality 
of the calculation results, with an RMS of no more than 0.5 pixels required to meet accuracy requirements. In this study area, 
aerial triangulation densification was performed based on ground control points. After joint adjustment, the mean error of the 
image points was determined to be 0.0013 mm. Since the mean error is less than 0.5 pixels, the image point accuracy of aerial 
triangulation densification meets the corresponding accuracy requirements. 

(2) Checkpoint accuracy of aerial triangulation densification 
After aerial triangulation densification and joint adjustment, the error of the check points is the difference between the field 

measurement coordinate values and the densified coordinate values calculated from the external orientation elements and their 
corresponding image point coordinates. A total of 38 control points were selected in the test area, and 10 of them were selected 
as check points. The residuals in the X, Y, and Z directions of the check points are shown in Table 12. 

Table 12: The direction residuals of checkpoint X, Y, Z 

Point number RX/m RY/m RH/m 
1 0.095 -0.034 0.057 
2 0.133 -0.103 0.056 
3 0.134 -0.022 0.248 
4 0.013 -0.044 -0.167 
5 -0.024 -0.092 -0.261 
6 -0.047 -0.034 -0.411 
7 -0.144 -0.036 0.185 
8 -0.08 -0.031 0.241 
9 -0.072 -0.024 0.211 
10 -0.103 0.03 0.095 
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According to the formula, the error in the plane coordinates of the aerial triangulation control points is 0.106 m, with a 
maximum error of 0.165 m. Similarly, the error in the elevation coordinates is 0.221 m, with a maximum error of 0.411 m. 
The accuracy of the aerial triangulation control points meets the corresponding accuracy requirements. 

 
III. B. 2) Evaluation of actual model accuracy 
The actual accuracy assessment of the model includes the planar accuracy, elevation accuracy, height accuracy, and 
representative segment length accuracy of the model. Planar accuracy, elevation accuracy, and length accuracy are determined 
by measuring the coordinates and lengths of the model within the three-dimensional model system, followed by field 
measurements of the planar and elevation coordinates of the checkpoints. The field measurements of the checkpoints utilize 
the GPS RTK (1+N) measurement method described earlier to determine the geodetic coordinates of the checkpoints within 
the study area. The field checkpoint coordinates are used as the true coordinates of the checkpoints for evaluating the model's 
actual accuracy. The differences between the two sets of coordinates and their mean errors are then calculated to evaluate 
planar accuracy and elevation accuracy, respectively. The accuracy of the three-dimensional model is analyzed based on the 
planar mean error and elevation mean error of the solution points, and conclusions are drawn. The height accuracy of the 
model is determined by calculating the height of the building using the elevation coordinates of the building's top and bottom 
obtained from field measurements as the true value, comparing it with the model height data measured in the three-dimensional 
system, and then analyzing the model height accuracy. It should be noted that the theoretical accuracy of regional network 
aerial triangulation is influenced by random errors during the measurement process and the layout scheme of control points. 
In actual accuracy assessment, it is also influenced by the combined factors of random errors and residual systematic errors. 
Therefore, there is a certain discrepancy between the theoretical accuracy of aerial triangulation densification and the actual 
accuracy of field measurements. 

(1) Planar accuracy 
A total of 20 planar checkpoints were selected in the survey area, and the planar checkpoint accuracy statistics are shown 

in Table 13. 

Table 13: Accuracy statistics of plane inspection points 

Serial Number X/m Y/m X'/m Y'/m /X m  /Y m  /XY m  
1 36201.055 71029.763 36205.918 71028.974 0.083 -0.064 0.099 
2 36360.906 70708.63 36358.572 70714.394 0.393 -0.268 0.458 
3 36347.135 70712.844 36349.567 70712.33 0.085 -0.043 0.077 
4 36305.35 70710.651 36306.389 70708.117 0.232 -0.284 0.309 
5 36284.833 70703.477 36288.977 70702.463 0.16 -0.19 0.158 
6 36249.482 70682.776 36247.97 70683.115 -0.093 -0.145 0.183 
7 36213.473 70687.375 36210.411 70690.315 0.425 0.168 0.422 
8 36333.716 70716.844 36331.468 70715.759 0.147 -0.128 0.195 
9 36374.58 70715.348 36371.573 70715.586 -0.062 -0.119 0.134 
10 36382.912 70671.533 36381.57 70668.159 -0.095 0.188 0.226 
11 36398.015 70721.788 36398.639 70725.617 0.124 -0.185 0.22 
12 36377.485 70714.358 36372.819 70715.888 -0.079 0.09 0.112 
13 36202.797 70714.388 36205.62 70722.606 -0.037 -0.197 0.211 
14 36194.002 70717.205 36194.469 70714.953 -0.283 0.354 0.443 
15 36145.015 70714.541 36150.039 70708.924 -0.031 -0.077 0.116 
16 36145.184 70712.592 36137.429 70712.727 0.095 -0.34 0.351 
17 36269.719 70715.539 36278.058 70715.211 0.072 0.106 1.111 
18 36372.381 70713.437 36374.294 70716.35 -0.097 0.143 0.167 
19 36114.823 70723.863 36112.549 70719.119 -0.132 -0.113 0.134 
20 36347.301 70711.477 36346.997 70716.665 0.207 0.161 0.265 

 
Statistical results of planar accuracy for the regional model: The mean error in the X direction is 0.173 m, with a maximum 

error of 0.412 m in the positive direction and 0.231 m in the negative direction. The mean error in the Y direction is 0.176 m, 
with a maximum error of 0.363 m in the positive direction and 0.325 m in the negative direction. The mean error in the planar 
coordinates is 0.253 m, and the maximum error is 0.463 m. The planar coordinate differences in the model data are 
predominantly between 0 and 0.3 m, with a few between 0.3 and 0.5 m. The planar checkpoint accuracy meets the 
corresponding accuracy requirements. 
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(2) Elevation Accuracy 
A total of 16 elevation checkpoints were selected in the survey area. The elevation accuracy statistics of the elevation 

checkpoints are shown in Table 14. 

Table 14: Elevation accuracy statistics of elevation checkpoints 

number Field measured elevation The model measures the elevation Elevation difference 
1 640.097 640.014 0.083 
2 625.41 625.118 0.292 
3 625.488 625.601 -0.113 
4 627.208 627.188 0.02 
5 627.82 627.94 -0.12 
6 629.8 630.055 -0.255 
7 631.703 631.771 -0.068 
8 626.117 626.071 0.046 
9 624.213 624.194 0.019 
10 624.418 624.58 -0.162 
11 626.543 626.318 0.225 
12 625.437 624.902 0.535 
13 630.57 631.465 -0.895 
14 630.371 630.253 0.118 
15 632.16 631.929 0.231 
16 632.106 632.109 -0.003 

 
Based on the above, the statistical results for elevation accuracy in the study area model are as follows: the maximum error 

in elevation coordinates is 0.895 m. The topographic accuracy of the 3D model can be described by the mean elevation error. 
However, different topographic conditions and mapping scales have different requirements for mean elevation error. The 
accuracy of elevation checkpoints meets the corresponding accuracy requirements. 

(3) Height Accuracy 
A total of 20 points were selected in the study area. The height of the buildings was calculated using the elevation coordinate 

values of the building tops and bottoms measured in the field as the true value, which was then compared with the model 
height data measured in the three-dimensional system. The model height accuracy was then analyzed. The building feature 
point height comparison table is shown in Table 15. 

Table 15: Height comparison of building feature points 

number Field measurement /m Model measurement /m Height difference /H m  
H1 12.43 12.89 -0.46 
H2 9.34 9.49 -0.15 
H3 12.21 12.24 -0.03 
H4 10.14 9.95 0.19 
H5 11.48 11.75 -0.27 
H6 12.63 12.19 0.44 
H7 10.42 10.43 -0.01 
H8 15.45 15.24 0.21 
H9 11.03 11.14 -0.11 
H10 12.41 12.86 -0.45 
H11 9.33 9.54 -0.21 
H12 15.6 15.66 -0.06 
H13 9.11 9.11 0 
H14 11.33 11.07 0.26 
H15 10.76 10.91 -0.15 
H16 9.66 9.43 0.23 
H17 5.85 5.73 0.12 
H18 8.92 9.2 -0.28 
H19 15.36 15.27 0.09 
H20 5.79 5.87 -0.08 
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Based on the above, the statistical results for the height accuracy of the study area model are as follows: the maximum error 
in height is 0.460 m. The accuracy of the height checkpoints meets the corresponding accuracy requirements. 

(4) Length accuracy 
Generally, buildings are composed of geometric structures, and the quality of these geometric structures has a significant 

impact on the final model quality. The key indicator for evaluating geometric structures is the length of line segments. 
Therefore, when evaluating model accuracy, it is also necessary to assess the lengths of representative line segments. In this 
study, 25 representative line segments were selected in the study area, and their corresponding lengths were measured in the 
3D modeling system. The differences between the two were compared and analyzed, as shown in Table 16. The statistical 
results for length accuracy of the study area model: the maximum error in length is 0.34 m. 

From the above-evaluated model's plane, height, and length accuracy values, it can be seen that the accuracy distribution 
of the three-dimensional modeling using remote sensing data in this study is relatively uniform and fully meets the “Three-
dimensional Geographic Information Model Data Product Specifications.” 

Table 16: Comparison of representative line segment lengths 

number Foreign industry /m Data length in 3D platform Measured data - model data /L m  
L1 10.37 10.32 0.05 
L2 19.52 19.53 -0.01 
L3 23 23.05 -0.05 
L4 11.06 11.11 -0.05 
L5 11.24 11.31 -0.07 
L6 11.55 11.55 0 
L7 14.46 14.66 -0.2 
L8 5.22 5.38 -0.16 
L9 11.52 11.49 0.03 
L10 11.24 11.48 -0.24 
L11 11.4 11.53 -0.13 
L12 11.35 11.69 -0.34 
L13 8.64 8.7 -0.06 
L14 11.69 11.51 0.18 
L15 11.4 11.63 -0.23 
L16 11.37 11.41 -0.04 
L17 6.31 6.13 0.18 
L18 8.53 8.44 0.09 
L19 11.7 11.58 0.12 
L20 14.74 14.48 0.26 
L21 12.36 12.3 0.06 
L22 13.43 13.54 -0.11 
L23 11.48 11.62 -0.14 
L24 9.91 9.8 0.11 
L25 10.73 10.5 0.23 

IV. Conclusion 
With the acceleration of urbanization, urban competition has become increasingly intense. As a result, urban management has 
emerged as a critical issue of widespread concern across nations and regions. This paper explores urban management three-
dimensional modeling methods from three perspectives: building extraction techniques, three-dimensional modeling methods, 
and remote sensing image rendering. The conclusions of this article are as follows: 

In the filtering experiments, this paper compares the performance of the classic TIN filtering algorithm and the region-
based semi-global filtering method. The filtering comparison results show that the region-based semi-global filtering method 
has strong robustness and can be widely applied to various filtering scenarios in urban and forest areas. The improved algorithm 
performs better, with its Type I error and total error significantly lower than those of the classic TIN point cloud filtering 
algorithm. In the Samp11 Type I error, the computational error of the proposed algorithm is 21.808% lower than that of the 
classical TIN point cloud filtering algorithm. 

In the actual accuracy evaluation experiment of the model, the planar coordinate error of the aerial triangulation densification 
checkpoints was calculated to be 0.106 m, and the elevation coordinate error was 0.221 m. The accuracy of the aerial 
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triangulation densification checkpoints meets the corresponding accuracy requirements. Therefore, the three-dimensional 
model constructed in this paper has good application effects. 
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