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Abstract In circuit design work, parameter optimization is an inevitable issue, especially in analog circuit design, which 
requires a high level of experience from designers. In traditional parameter optimization processes, designers may also rely on 
optimization algorithms to find optimal solutions. This paper uses reinforcement learning algorithms to find optimal strategies, 
exploring two functions under model-free reinforcement learning algorithms: the value function and the policy function. These 
functions are estimated using recursive forms and policy gradients. Using the Y parameter to extract equivalent circuit 
parameters in RF circuits, a frequency AI model is established to optimize the parameters of RF circuits. The optimization 
effect is verified through metrics such as gain and frequency, and the final optimized results of the RF circuit are calculated. 
The distribution of the receptive field in the value function method model tends toward a Gaussian distribution, exhibiting 
sparsity, with weight values primarily distributed at both ends of 0, and the frequency approaching 120. This paper proposes 
three optimization schemes for parameter tuning, with the optimal solution coordinates for Schemes 1 to 3 being [3.671, 0.749], 
[3.726, 0.834], and [3.847, 0.578], respectively. After optimization, the static power consumption of the RF circuit was reduced 
by over 54% compared to before optimization, and the circuit cost was reduced by over 40%, indicating that the method 
proposed in this paper has good optimization effects. 
 
Index Terms reinforcement learning, optimal policy, policy gradient, RF circuit, parameter tuning 

I. Introduction 
With the advancement of technology, communication methods have been continuously evolving, and the scope of 
communication has gradually expanded to encompass various aspects of people's lives, including work, study, daily 
communication, and signal transmission [1]-[3]. Simultaneously, communication methods have become increasingly diverse, 
with technologies such as RFID, 3G, GPS, Wi-Fi, WLAN, ZigBee, and WiMAX all utilizing wireless communication methods 
[4]. The wireless communication field primarily relies on radio frequency (RF) circuit systems for implementation. Various 
wireless communication systems adopt similar structures to accomplish the two processes of wireless communication 
transmission and reception [5]-[8]. RF communication technology, with its advantages of low cost, low power consumption, 
and simplicity of development, has become the fastest-growing and most widely applied technology in the communication 
field in recent years [9], [10]. Its primary application areas include industrial control, environmental monitoring, smart homes, 
and unmanned operations [11]. 

Although RF communication technology is already relatively mature, RF circuit design remains a critical technical factor 
influencing the reliable operation of communication systems, such as impedance matching, filter selection, component 
arrangement, and PCB routing across different operating frequency bands [12]-[15]. RF circuit design primarily aims to 
achieve technical specifications such as high transmission reliability, low power consumption, low cost, high communication 
quality, and high data transmission rates [16]-[18]. By leveraging intelligent optimization techniques to analyze RF circuits, 
electronic components such as impedance transformers, filters, and DC blocks within the RF circuit can be adjusted to improve 
RF circuit return loss, reduce insertion loss, increase transmission distance, and decrease packet loss rates [19]-[22]. 

This paper uses the particle swarm algorithm as an example to explain the operation process of global optimization 
algorithms and proposes two reinforcement learning algorithms: model-free and model-based. Based on this, Y parameters 
are used to extract parameters from the equivalent circuits of RF devices in the RF circuit. Electromagnetic results are 
calculated using full-wave simulation tools and used as training and testing data for generating AI models. The Y parameter 
data is normalized to construct an RF device equivalent circuit simulation model. Through simulation and testing experiments, 
the target circuit parameters are verified, the performance parameters of different optimization methods are compared, and the 
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results of the RF circuit parameter optimization designed in this paper are obtained, verifying the feasibility of the proposed 
method. 

II. Algorithm principles 
II. A. Global Optimization Algorithms 
Taking the Particle Swarm Optimization (PSO) algorithm as an example, this algorithm is inspired by the study of bird flocks 
hunting for prey and is a heuristic search algorithm [23]. The core idea is to find the optimal solution through information 
sharing and collaborative assistance among particles. The implementation of PSO is relatively simple, and the number of 
hyperparameters is also relatively small. 

In the Particle Swarm Optimization algorithm, objects (birds) are represented by abstract particles in an N -dimensional 
space. A population consists of multiple particles, and the position of the i th particle can be described by the coordinate 
vector 1 2( , ,..., )i i i iNX x x x  and its movement is represented by the velocity vector 1 2( , ,..., )i i i iNV v v v . Each particle has 
different velocities in each dimension. Particles update their positions using their own known information iX  and bestp , as 
well as the shared information bestg  within the population. The update formula is given by Equation (1): 
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In differential evolution, the mutation operation is implemented using a differential strategy. A common approach is to 
randomly select two different individuals ( )t

iX  and ( )t
jX  from the population, scale them, and then perform the mutation 

operation on a specific individual ( )t
kX  to be mutated: 
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Crossing is also a step that reflects random selection, i.e., randomly crossing mutated individuals with unmutated individuals: 
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CR  is the survival probability.  
The selection process adopts a greedy strategy, i.e., selecting the individual with the best fitness to survive: 
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II. B. Reinforcement Learning Algorithms 
The goal of reinforcement learning is to find the optimal strategy [24]. To couple exploration, strategies often use random 
strategies ( | )a s , which is the distribution of action a  in state s . In the process of searching for strategies, reinforcement 
learning algorithms can be divided into model-free and model-based algorithms based on different interaction methods (direct 
or indirect) between the intelligent agent and the environment. The relationship between various algorithms in reinforcement 
learning is shown in Figure 1. 
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Figure 1: The relationship among various algorithm systems in reinforcement learning 
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II. B. 1) Model-free reinforcement learning algorithms 
(1) Value Function 

In model-free reinforcement learning algorithms, since the model of the agent's interaction with the environment is unknown, 
Monte Carlo methods use empirical averaging to estimate the value function. Obtaining sufficient experience is the core of 
model-free reinforcement learning, and whether the correct value function can be obtained depends on whether the experience 
is sufficient [25]. When obtaining experience, it is necessary to conduct multiple experiments based on the current strategy to 
generate multiple sets of data, which are referred to as experience. As shown in Figure 2. 
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Figure 2: Sampling process of the Monte Carlo algorithm 

In reinforcement learning algorithms, the value function is used to evaluate the quality of a strategy. The value function is 
defined as follows: 
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The average of the experience is obtained by using the statistics obtained from sampling to estimate the distribution and find 
the mean, that is: 
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  is the total discounted return obtained in the i th experiment under state ts , and ( )N s  is the number 

of times state s  occurs. According to the law of large numbers, we have: 
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After estimating the value function of the state, it is natural to improve the policy. In Monte Carlo, the method for improving 
the policy is to maximize the action value function, i.e., ( ) argmax ( , )as Q s a  , where the action value function ( , )Q s a  
was introduced in (5). Therefore, the learning speed is slow, and the learning efficiency is not high. Another search strategy 
method is called the temporal difference (TD) method. 

Equation (6) defines the value function. While the Monte Carlo method uses statistical methods for estimation, the TD 
method converts it into a recursive form for estimation: 

 1 1( ) [ ( ) | ]t t tV s E r V S S s 
      (8) 

When calculating cumulative returns using a recursive approach, the value function of the next step is used to estimate the 
current cumulative return, i.e., 1

1 1( )t t tR r V S    represents the use of the value function of the next step to estimate. Of 
course, the value function of the next n  steps can also be used for estimation: 1
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does not hold, so further, ( )TD   uses these n  next states to estimate the current return: 
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(2) Policy function 
The main methods for optimizing policies are policy gradient methods and confidence interval methods, and the optimization 

objective ( )J   is to maximize the return under the policy  . For random policies, it can be defined as [26]: 
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( )d s  represents the distribution of states.  
The policy gradient method can directly calculate the gradient of the objective function ( )J  , and use the gradient ascent 

method to update the weights ( )J      . The gradient can be expressed as: 
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II. B. 2) Model-based reinforcement learning algorithms 
The supervised learning module is the learner, which obtains actual trajectory data and optimal control rates from the optimal 
controller and uses a neural network to fit the relationship between them, thereby learning the optimal control method. Coupling 
is achieved in GPS using constraint conditions, which take the following form: 
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In this context,   is the meta-loss defined in the environment, which is the opposite of the definition of reward—the 
smaller the meta-loss, the better. H   represents the entropy of the distribution q  , and the optimization objective is to 
minimize the cost function   while maximizing the entropy of q . The first two terms in the constraints ensure that the 
distribution ( )q    of the control module is consistent with the initial state of the environment, i.e., the state transition 
distribution, and are primarily applied in trace optimization. The last term requires the divergence between the two distributions 
to be zero, meaning that the control strategy ( | )t tq a s  and the distribution of the supervised learning module ( | )t ta s  are 
completely consistent, indicating coupling between the two modules. The role of the optimal controller is to adjust its control 
strategy to minimize the meta-loss. The constraint conditions can be expressed in the form of Lagrange multipliers as: 
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Therefore, the constrained objective function is transformed into an optimization Lagrange function: alternately optimize 
the control system q , the supervised learning module weights  , and the Lagrange multiplier t . 

Therefore, the search process of the GPS algorithm is to alternately optimize the track and the supervised learning module. 
The process of optimizing the control strategy q  of the above regulator is called track optimization. In general optimal 
controllers, assuming the dynamic system is linear and the cost function is quadratic, a local linear Gaussian dynamic system 
is used to approximate 1( | , )t t tq s s a  , and the control strategy is ( | ) ( , )t t t t tq a s a Ks A N  is defined, where N  is the 
Gaussian distribution. With the definition of q , the entropy of q  can be calculated: 
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Substituting entropy into equation (14) and using the Laplace approximation, i.e., modeling the policy ( | )t ta s  with a 
local linear Gaussian distribution, whose mean is ( )t ts

   and variance is t
   while the dynamic system is 
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cost function with respect to the state-action ( , )Tt ts a , and the Hessian matrix is represented as ,sa sat
 . Thus, the objective 

function of the control module can be written in the following form: 
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tS  denotes the covariance matrix of the state distribution ( )tq s  and tA  denotes the covariance matrix of the conditional 
distribution ( | )t tq a s  

In the policy optimization module, if the control policy remains unchanged, it becomes a supervised learning optimization 
problem. The training samples tis  are sampled from the distribution ( )tq s  of the dynamical system at time t , and the 
objective function can be written as: 
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Among them, matrix tK  and vector tk  are used to fit the local linear relationship of the strategy. 
 

II. C. RF device parameter extraction based on reinforcement learning 
II. C. 1) Establishing a frequency AI model 
When extracting parameters from the equivalent circuit of RF devices using Y parameters, relatively dense frequency points 
are required to supplement the Y parameter information corresponding to the frequency points needed for equivalent circuit 
parameter extraction. 

The electromagnetic results calculated by the efficient full-wave simulation tool IC (UltraEM®) at certain frequencies will 
be used as training and testing data for generating AI models. Once the AI model is established, electromagnetic results at any 
frequency can be directly obtained from the model. Then, the equivalent circuit parameters are extracted using Y-parameters 
via the innovative hybrid genetic algorithm proposed in this paper. 

The Y-parameters at certain frequency points are calculated using UltraEM®, and the Y-parameter data is normalized. The 
normalized data is divided into a training dataset and a testing dataset. 70% of the data is used as training data, and 30% is 
used as testing data. The Adam optimization algorithm is used to minimize the loss function MSE, which can be expressed as: 
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where i   is the i  th sample, iy   is the true value corresponding to the input item ix  , iy
   is the predicted value 

corresponding to the input item ix  calculated by the neural network, and n  is the number of samples. Once the loss function 
meets the requirements, an AI model is established. This model can be used to obtain the Y parameter at any frequency. 
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II. C. 2) Equivalent circuit modeling of RF devices 
The full-wave simulation results of the RF device layout are obtained through an AI model, and the corresponding Y 
parameters are marked as EMY . By using a Spice simulator, the Y parameters of the equivalent circuit can be obtained from 
the calculated port voltages and currents, namely: 

 I YV  (18) 

where Y is an N N  matrix, V and I are the port voltage vector and port current vector, respectively. The elements of the Y 
matrix are defined as: 

 0,|
k

n
nm V k m

m

I
Y

V    (19) 

If the voltage of the excitation port is set to 1 volt, then the Y parameter is equal to the port current, i.e.: 

 nm nY I  (20) 

Mark the simulated Y parameters in the equivalent circuit as spiceY . To make the results of the equivalent circuit fit the 
accurate EM simulation, the objective function to be optimized can be defined as: 
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In this context, N  is the slogan, and fs  and fe  represent the start and end frequencies, respectively. 
 

II. D. RF circuit parameter tuning based on reinforcement learning 
This paper uses the blktrace tool to capture I/O information under different data loads. Based on the differences in I/O 
characteristics under different loads, it identifies changes in the data load of the power Internet of Things edge. Figure 3 shows 
the I/O information capture, illustrating the process of the blktrace tool collecting disk I/O information at the block device 
layer. 
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Figure 3: I/O information capture 

First, the workload analyzer identifies new data workload feature types, which are combined with predefined configuration 
parameters to form a scoring data matrix. Singular value decomposition (SVD) is then used to handle missing values in the 
matrix. Next, the similarity between workload types in the power data storage system is calculated to generate a set of nearest 
neighbor workload types. Finally, a combination of a performance cost function and workload similarity estimation is used to 
generate recommended configuration parameters. Based on the actual runtime of the workload and the cluster state, it is 
determined whether to update the power data storage system configuration parameter database. The specific implementation 
steps are as follows. 

The workload analyzer identifies and collects different workload feature types, testing the resource utilization of each 
workload feature under different configuration parameter samples within the cluster. To facilitate the recommendation process 
calculations, resource utilization is treated as the score value of the data workload for different configuration parameters. 

Use the SVD method to decompose matrix A  and obtain the product of two matrices P  and Q  to represent the rating 
matrix A : 

 A PQ  (22) 
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Using the known ratings in the rating matrix A  to train the matrices P  and Q , such that the product of P  and Q  
best fits the known ratings. Let the missing value rating for load type u  and configuration parameter i  in the rating matrix 
A  be denoted as uiR . Multiplying the u th row uP  of matrix P  by the i th column iQ  of matrix Q  yields equation 
(23): 

 ui u iR P Q  ú  (23) 

Assuming that the score uiR  is known, for each missing value error in matrix A , let ui ui uiE R R  , and calculate the 
total sum of squared errors as follows: 
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In the equation, ukP  and kiQ  are the corresponding elements in matrices P  and Q , respectively. 
To make the predicted values better fit the matrix A , it is necessary to minimize the value of sseE  through training. Using 

the gradient descent method, the gradient of the value of sseE  at the variable ukP  is obtained as: 
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In the equation:   is the regularization factor. To avoid overfitting, the objective function ssE   at ukP , ukP  is updated 
in the direction of the negative gradient. Let the parameter update rate be  . The update equations for ukP  and kiQ  are: 
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The stochastic gradient descent (SGD) algorithm is used to update ukP  and kiQ . In each iteration, the parameters are 
updated using a single training data point until the algorithm converges. 

Compared to the batch gradient descent (BGD) algorithm, SGD does not require the use of all data to calculate the objective 
function. Instead, it randomly optimizes the SSE value on a single training data point in each iteration, significantly accelerating 
the update speed of ukP  and kiQ  and helping to avoid local optima. 

III. Testing and verification 
III. A. Target circuit parameter verification 
III. A. 1) Verification of gain 
Use the reinforcement learning algorithm obtained from the search to perform forward propagation prediction of the output 
waveform for 100 sine waves with constant power and gradually increasing frequency. Select 5,000 consecutive points from 
the input signal of each curve and perform FFT transformation: 

 ( ) ( ( ))X f FFT x t  (27) 

Identify the frequency with the maximum amplitude in the frequency spectrum of the signal: 

 max arg max | ( ) |f X f  (28) 

Convert the amplitude of this frequency into signal power: 

 max max| ( ) |V X f  (29) 
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V
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In the equation, Z = 50 Ω, maxV  is the signal amplitude, and inP  is the input signal power. 
Performing the same calculation process on the output signal yields the value of the output signal power Pout. Then, the 

model-predicted gain is: 

 ,model out model inG P P   (31) 

The actual gain of the target circuit is: 

 ,out measure inG P P   (32) 
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For the gain-frequency curve, the gain value and frequency value at the point of maximum spectral amplitude were recorded. 
Based on 100 sine waves of different frequencies in the test set, 100 pairs of actual values and model-predicted values for the 
gain-frequency points were calculated, as shown in Figure 4. 

In the figure, the gain-frequency curve Predicted_Gain is inferred by reinforcement learning, while the gain-frequency 
curve VNA_Gain is the actual test result from the vector network analyzer. The OSC_Gain curve in the figure is the actual 
test result gain-frequency curve obtained by calculating the actual test data from the oscilloscope using FFT and a formula. 

By comparing the three curves, it can be seen that the error in the model's estimation of the target circuit parameters primarily 
stems from the waveform data measurement errors of the oscilloscope. The curve corresponding to the test waveform data 
differs from the curve directly measured by the vector network analyzer, which may be due to the insufficient precision of the 
oscilloscope used in the experimental testing. However, the parameter curve inferred by the model has a high degree of overlap 
with the curve corresponding to the waveform data measured by the oscilloscope, which serves as the data source for the 
model, indicating the accuracy of the modeling method. The parameter curves inferred by the model exhibit high matching 
accuracy with the waveform data curves from oscilloscope testing below 2.5 GHz. Above 2 GHz, the error between the 
predicted results and the oscilloscope data is also less than 0.724 dB. 

 

Figure 4: The gain-frequency curve is compared 

Using an additional two sets of 100 sine waves with fixed frequencies and gradually increasing power from the test set, the 
gain-input power curves at input frequencies of 0.9 GHz and 1.9 GHz were calculated and compared with the results obtained 
from the actual input and output waveforms of the target circuit. 

Due to experimental environment constraints, the actual gain-input power curves of the devices were not obtained through 
testing but were derived from actual input and output waveform data collected by an oscilloscope and subsequently calculated. 
Figure 5 shows the gain-input power curves predicted using reinforcement learning, with Figure (a) representing 0.9 GHz and 
Figure (b) representing 1.9 GHz. At an input frequency of 0.9 GHz, the model's prediction results are relatively accurate. 
However, at an input frequency of 1.9 GHz, the prediction at low amplitudes has an error of approximately 0.237 dB. This 
error primarily originates from the high-frequency components in the training set. Due to the limitations of the experimental 
testing equipment, the oscilloscope's signal acquisition has a truncation error at 7 GHz, resulting in insufficiently accurate 
training data in the high-frequency region and consequently causing errors in high-frequency predictions.  

  
(a)0.9GHz (b)1.9GHz 

Figure 5: Comparison of gain-input power curve results 

III. A. 2) Comparison of parameter optimization effects 
From the experimental results, it can be seen that reinforcement learning achieves better fitting performance for RF integrated 
circuits compared to RNN and LSTM models. The possible reason is that RF signals typically contain local periodic or short-
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term patterns (such as pulses or modulation characteristics). Convolutional networks efficiently capture these local features by 
sliding the convolution kernel along the time dimension, whereas RNN and LSTM models, which rely on sequential processing, 
exhibit weaker sensitivity to local patterns. Reinforcement learning's residual connections mitigate the vanishing gradient 
problem, allowing deeper networks to be constructed to learn complex features. Even with gating mechanisms, deep recurrent 
networks still face gradient decay challenges during training, making it difficult to train the model to the required accuracy. 

Figure 6 shows the impact of the two search methods on the receptive field parameter distribution of the residual model. 
Figure (a) shows the value function search results, and Figure (b) shows the policy function search results. Figure 7 shows the 
impact of the two search methods on the prediction accuracy of signals at different frequencies. The experimental results 
indicate: 

(1) The policy function search method, which divides the size of each convolutional kernel layer, can search for more 
flexible structures and achieve model structures with the same level of performance as those obtained by the value function 
search method using fewer parameters. Except for a few frequency points where the accuracy is inferior to that of the value 
function method, the policy function method generally achieves higher modeling accuracy than the value function method, 
especially in the high-frequency range. The reason for the insufficient accuracy in the high-frequency range is that the cutoff 
frequency of the oscilloscope used in the experiment is not high enough. 

(2) Models searched using the policy function method significantly reduce search time while maintaining the same level of 
performance as models searched using the value function method. For the search space defined in this paper, on the server 
equipped with an NVIDIA GeForce GTX 1080 Ti, the value function method required 6.315 hours, while the policy function 
method only required 1.348 hours, saving 78.654% of the time compared to the value function method. 

(3) The policy function method and the value function method identified receptive fields of the same size, but the distribution 
patterns of the receptive field parameters for these 8 channels were different. The receptive field distribution of the model 
trained by the value function method tended toward a Gaussian distribution, exhibiting sparsity, with weight values centered 
around 0 and a frequency close to 120. In contrast, the receptive field distribution of the model identified by the policy function 
method tended toward a uniform distribution, with higher dependency on each parameter. 

  
(a)Value function (b)Policy function 

Figure 6: The effect of the residual model on the distribution of field parameters 

 

Figure 7: The effect of the prediction accuracy of different frequency signals 

III. B. RF circuit design parameter optimization testing 
III. B. 1) Comparison of optimization method performance tests 
This section compares the software-based optimization method with the reinforcement learning-based optimization method 
proposed in this paper through experimental verification to validate the superiority of the proposed method in terms of 
optimization efficiency. Since different decision variables have varying weights in the objective function, this paper assigns 
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different weight coefficients to each decision variable when constructing the objective function. For the objective variable TC , 
it represents the impact of transistor cost on the overall circuit cost. Based on engineering experience, it is believed that the 
high-frequency performance metric, i.e., the product of CJC  and bbr , has a significant impact on the cost of RF circuits. 
Therefore, its coefficient is set to c=0.4, while the weights of the remaining metrics are distributed evenly. For the objective 
variable OC , it is primarily composed of passive components. Compared to the other two objective variables, its impact on 
the overall circuit cost is relatively small. Therefore, its coefficient is set to k = 0.1. For the objective variables TC  and QC , 
three weighting schemes were designed in this paper. Scheme 1 represents equal weights for both variables, while the other 
two schemes prioritize one of the objective variables. The corresponding coefficients are shown in Table 1. The population 
size of the PSO algorithm is set to 30, and the number of iterations is set to 10. Both simulation-based and reinforcement 
learning-based circuit component parameter optimization methods are used to solve the three schemes. The results are shown 
in Tables 2 and 3. 

From the comparison of the two tables, it can be seen that although the optimization effects of the two methods are not 
entirely the same, the simulation-based method does indeed have a higher time cost. At the same time, the comparison results 
also confirm that the reinforcement learning-based method has a significant advantage in terms of optimization time cost. In 
terms of solution time, the reinforcement learning solution time is stable between 8.6 and 8.9 seconds, far exceeding the 
optimization solution time of the simulation method. At the same time, the optimization rate has also been slightly improved. 

Table 1: objective function weight coefficients 

Weighting m n k a b c d 
Solution 1 0.4 0.45 0.15 0.25 0.25 0.45 0.2 
Solution 2 0.55 0.35 0.2 0.2 0.2 0.4 0.25 
Solution 3 0.35 0.65 0.2 0.25 0.15 0.35 0.2 

Table 2: The comparison of the optimized results is based on the simulation 

Scheme Index Preoptimize After optimization Optimization rate Solution time 

Solution 1 
Static power(mW) 8.625 4.248 50.75% 

2h3min 
Circuit cost 1.345 0.915 31.97% 

Solution 2 
Static power(mW) 8.469 4.398 48.07% 

2h10min 
Circuit cost 1.598 1.125 29.60% 

Solution 3 
Static power(mW) 8.469 4.498 46.89% 

2h5min 
Circuit cost 1.045 0.698 33.21% 

Table 3 The comparison of the optimized results of intensive learning was compared 

Scheme Index Preoptimize After optimization Optimization rate Solution time 

Solution 1 
Static power(mW) 8.625 4.125 52.17% 

8.675s 
Circuit cost 1.345 0.869 35.39% 

Solution 2 
Static power(mW) 8.469 4.162 50.86% 

8.836s 
Circuit cost 1.598 1.328 16.90% 

Solution 3 
Static power(mW) 8.469 4.093 51.67% 

8.715s 
Circuit cost 1.045 0.523 49.95% 

 
III. B. 2) Final tuning results of the radio frequency circuit 
In the previous experiment, due to the time-consuming nature of simulation-based optimization methods, only minor 
adjustments were made to the population size and iteration count parameters of the PSO algorithm. To ensure that the circuit 
is fully optimized, this experiment employs a deep learning-based circuit optimization method. The initial population size for 
the PSO algorithm is set to 500, and the number of iterations is set to 400, with the remaining parameters using the default 
settings from the pymoo framework. The optimal solution sets for the three solutions obtained are shown in Figure 8, with 
Figures (a) to (c) representing Solutions 1, 2, and 3, respectively. In these three figures, the final selected optimal solutions 
are marked with “※.” The optimal solution coordinates for Schemes 1 to 3 are [3.671, 0.749], [3.726, 0.834], and [3.847, 
0.578], respectively. 
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(a)Solution 1 (b)Solution 2 (c)Solution 3 

Figure 8: solution 

The values of the decision variables at the optimal solutions for each of the three schemes are shown in Table 4. After 
rounding the decision variables obtained in the table, they are substituted into the RF transmission circuit. Using the Pspice 
A/D simulation software to perform time-domain simulation on the circuit will yield the optimized current signal. Analyzing 
this current signal will yield the corresponding constraint variables under the given decision variable inputs. The constraint 
variable values for the three schemes are shown in Table 5. 

A brief explanation of the transistor's DC gain is provided here. The values given in Table 4 refer to the transistor's values 
under the current DC bias conditions. The DC gain of a transistor exhibits significant variability under different DC bias 
conditions. Taking the common transistor 2N3903 as an example, although its data sheet specifies a typical DC gain value of 
150–300, when the collector current is 1 mA and the voltage drop is 1 V, its DC gain is 35. 

Table 6 shows a comparison of the performance metrics before and after optimization. Within the specified constraints, the 
circuit was optimized, resulting in a reduction of over 54% in static power consumption and over 40% in circuit cost compared 
to the pre-optimization state, demonstrating the feasibility of the proposed method. 

Table 4: Decision variables at optimal solution 

Decision variable Parameter Solution 1 Solution 2 Solution 3 

1x  1ajtC  443.849p 394.948p 486.966p 

2x  2ajtC  50.164p 50.648p 50.469p 

3x    24 35.269 23 

4x  CJC  36.487p 38.948p 35.536p 

5x  CJE  38.966p 35.648p 38.934p 

6x  bbr  115.648p 146.696 101.469 

7x  rf  200.469M 200.291M 234M 

8x  biasR  79.069K 76.269K 75.985K 

9x  QR  11.596K 10.396K 9.866K 

10x  1C  53.497p 57.395p 54.469p 

Table 5: Values of constraint variables at optimal solution 

Decision variable Parameter Solution 1 Solution 2 Solution 3 

1y  CDMf  33.748KHz 35.425KHz 34.345KHz 

2y  DDMf  19.569KHz 19.648KHz 19.625KHz 

3y  DV  13.348Kbit/s 13.749Kbit/s 13.525Kbit/s 

4y  WB  -15.654dB -15.248dB -16.166dB 

5y  PA  -1.348dB -1.249dB -1.348dB 

6y  cI  60.526mA 64.396mA 61.248mA 
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Table 6: Comparison table of indicators before and after optimization 

Scheme Index Preoptimize After optimization Optimization rate Solution time 

Solution 1 
Static power (mW) 8.625 3.648 57.70% 2m21s 

 Circuit cost 1.345 0.748 44.39% 

Solution 2 
Static power (mW) 8.469 3.618 57.28% 

2m35s 
Circuit cost 1.598 0.869 45.62% 

Solution 3 
Static power (mW) 8.469 3.869 54.32% 

2m31s 
Circuit cost 1.045 0.618 40.86% 

IV. Conclusion 
This paper introduces the principles of global optimization algorithms and reinforcement learning algorithms, and derives two 
types of reinforcement learning algorithms: model-free and model-based. Using this algorithm, a frequency AI model was 
established to model the equivalent circuit of RF devices in RF circuits and extract parameters related to RF devices. The SVD 
method was used to decompose the parameter matrix, avoiding overfitting. Test experiments were designed to verify the 
optimization results of the target circuit parameters and RF circuit parameters. The gain-frequency curve was verified, and the 
waveform data from the waveform tester showed a high degree of overlap with the curve, with an error of less than 0.724 dB 
between the two, indicating the accuracy of the modeling method. Comparing the parameter optimization results, the search 
time for the value function and policy function were 6.315 hours and 1.348 hours, respectively. In terms of time cost, the 
policy function method saved 78.654% of the time compared to the value function method. In terms of solution time, the 
reinforcement learning solution time is stable between 8.6 and 8.9 seconds. Additionally, the static power consumption of the 
optimized circuit is reduced by over 54% compared to the pre-optimization state, and the circuit cost is reduced by over 40%, 
indicating that the method proposed in this paper is feasible. 
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