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Abstract In the era where art and technology converge, the application of artificial intelligence in the field of music is
becoming increasingly widespread. This paper constructs a music generation model using the Transformer, which is based on
the self-attention mechanism, as the primary network architecture. Music style is measured using indicators such as chord
histogram entropy, chord notes, non-chord note ratio, and style adaptability. This paper selected 10 new MIDI music pieces
as research subjects to evaluate the Transformer model and explore its reliability. The results show that the performance of
the model used in this paper is superior to that of other models. Other models still lag behind the Transformer model by 3% to
15% in terms of musicality metrics, demonstrating the superiority of the Transformer-based music model.

Index Terms aesthetic perception, Transformer model, self-attention mechanism, artificial intelligence, style compatibility

I. Introduction

With the continuous advancement of technology, artificial intelligence (AI) has gradually permeated various fields, including
the music industry. The application of Al in the music industry not only provides music creators with more creative tools and
inspiration but also offers music enthusiasts a richer and more diverse listening experience. Additionally, it has driven
transformations in music aesthetics and aesthetic perception [1]-[4]-

In the field of music creation, Al technology can simulate the characteristics of different music styles and blend them
together to create novel and unique musical works [5], [6]- By analyzing and learning from large amounts of music data, Al
can identify the features of different music styles and combine and transform them to create one-of-a-kind musical works
[7]-[9]- This fusion and innovation of musical styles provides music creators with more creative possibilities and offers
music listeners a wider range of musical choices [10], [11].

At the same time, Al technology can provide personalized creative support to creators based on their individual musical
preferences and creative styles [\12], [13\]. By analyzing individual music preferences and creative styles, Al can generate
music works tailored to individual needs and provide corresponding creative suggestions [14]—[\16\]. This personalized music
creation not only meets the personalized needs of creators but also provides music enthusiasts with music works that better
align with their tastes [17], [18]-

Al has also had a profound impact on aesthetic experiences. Al technology can analyze an individual's music preferences
and listening history to provide personalized music recommendations for music listeners [19]—[\21\]. Intelligent
recommendation systems can recommend music works that align with an individual's preferences and listening history [PZD,
[\23\]. This personalized music recommendation enables music listeners to discover and enjoy music works they love more
conveniently [24], [25]- However, the application of Al in the fields of music and art also presents some challenges [26].
First, whether Al-created music and artworks possess true artistic value is a question that remains to be explored [27], [28]-
Second, the application of Al may lead to the disappearance of some traditional art forms, and how to balance tradition and
modernity is also a question that requires consideration [29], [30]-

This paper employs the Transformer model, using self-attention mechanisms as the core mechanism to screen out more
effective information. By capturing the correlations between vectors, it calculates the attention weights at each position
during the encoding process. The hidden vector representation of the entire sequence is obtained through the weighted sum,
and the hidden representations of the input and output are calculated to generate Al music. Indicators such as chord histogram
entropy, chord notes, non-chord note ratio, and style compatibility are used to measure music style. This paper uses 10 new
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MIDI music pieces as research samples to evaluate the model. The effects of Transformer model composition and traditional
neural network model composition are compared to verify its reliability.

In an era where art and technology converge, artificial intelligence is driving the development of musical aesthetics and transforming aesthetic perception

II. Research on Artificial Intelligence Empowering Music Transformation
II. A. The Influence and Application Potential of Al in the Field of Music

The rapid development of artificial intelligence (AI) is profoundly impacting every aspect of human society. Traditional
music education, which falls under the realm of liberal arts and fine arts disciplines, has long emphasized theoretical research,
imitation of works, and technical training, remaining in a relatively closed state. This approach struggles to fully meet the
demands of the digital age for versatile musical talent. To swiftly enhance interdisciplinary integration while preserving the
uniqueness of artistic disciplines, technology emerges as the optimal external force in the new era.

In the 1960s, Al first entered the field of music education, presenting unprecedented possibilities. In early explorations, the
development of electronic keyboard instruments and electronic synthesizers became landmark achievements. These devices
simulate the timbre of various instruments, store fixed melodies and rhythms, are easy to operate, and intelligent, providing
students with opportunities for personalized creation and sharing, thereby stimulating their learning interest and musical
creativity [31]-

(1) In-depth exploration of intelligent music analysis

Initial intelligent music analysis primarily focused on the simple identification of notes and rhythms. With continuous
technological upgrades, modern intelligent music analysis now possesses more advanced functionalities. Expansions into
areas such as emotional analysis and melodic structure analysis enable Al systems to comprehensively understand students'
cognition and expression of music. This deep exploration also opens up new possibilities for special music education. The
system can accurately capture emotional changes in students' musical expressions, thereby better adjusting teaching strategies
to meet diverse learning needs.

(2) Provision of personalized teaching plans

Al technology can tailor learning plans to meet the needs of each student. Individual differences are very significant in
music teaching, and personalized teaching plans can design different types of interesting learning activities to stimulate
students' interest and give them a profound learning experience, meeting the needs of different students. At the same time,
accurate analysis of subject proficiency levels enables the system to provide learning content of appropriate difficulty for
each student, ensuring that the teaching pace is neither too fast nor too slow, and improving the overall quality of music
education.

(3) Promotion of intelligent music creation

With the continuous development of Al technology, intelligent music creation has become a highly regarded field. By
training machine learning models, Al can generate relatively artistic musical works, providing students with more
opportunities to participate in music creation. In traditional music creation, students may be limited by their own musical
theory knowledge and creative experience, but with the introduction of Al technology, students can interact with the system
to gain more creative inspiration and possibilities.

II. B. The Advantages of Artificial Intelligence in Enhancing Musical Aesthetics

(1) Improving music creation efficiency

The introduction of Al technology has significantly improved the efficiency of music creation. Traditional music creation
often requires creators to invest a great deal of time and effort in conceptualization and creation, while Al can generate a
large number of high-quality music works in a short period of time. This not only reduces the burden on creators, but also
promotes the diversification and prosperity of music creation.

(2) Expanding the diversity of musical aesthetics

Al can generate music works in various styles and genres, greatly expanding the diversity of musical aesthetics. By
integrating musical elements from different cultural backgrounds, Al can create novel and unique musical styles, bringing
listeners an unprecedented aesthetic experience. This cross—cultural integration not only enriches the connotation of music art,
but also promotes the exchange and dissemination of global music culture.

(3) Providing personalized music experiences

Al-based music recommendation systems use advanced algorithms to deeply analyze users' listening habits and
preferences, thereby providing highly customized music content. This personalized experience not only significantly
enhances user satisfaction but also effectively broadens users' aesthetic horizons. Al systems learn users' responses to
different musical elements, such as melody, rhythm, and lyrics, and intelligently recommend tracks that align with users'
emotional states and contextual needs.

(4) Supporting music education and research

Al technology is playing an increasingly important role in music education and research. Al can not only analyze complex

musical works to help students understand music theory, harmony, and melody composition, but also enhance learning
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efficiency and engagement through interactive learning tools. In research, Al applications facilitate music pattern recognition,
emotional analysis, and the restoration of historical musical works, providing music scholars with unprecedented depth and
breadth in their research. Additionally, Al-assisted music composition tools inspire students' creativity, enabling them to

discover new forms of musical expression through experimentation and exploration, thereby driving innovative development
in music education and research.

In an era where art and technology converge, artificial intelligence is driving the development of musical aesthetics and transforming aesthetic perception

ITII. Symbolic music generation based on Transformer

The Transformer abandons traditional CNN and RNN structures, relying solely on self-attention mechanisms to compute the
latent representations of inputs and outputs. The Transformer adopts an encoder-decoder architecture, where the encoder
module and decoder module are each composed of the same number of stacked encoders and decoders [32]- The basic
architecture of the Transformer is shown in Figure |1. The encoder unit consists of a multi-head attention mechanism and a
feedforward neural network. Similar to the encoder unit, the decoder unit also includes a multi-head attention mechanism and
a feedforward neural network, but it has an additional layer of multi-head attention mechanism to focus on relevant parts of
the input sequence. Additionally, residual connections are added to both the encoder and decoder units, denoted as “Add” in
the figure, to prevent degradation issues during training of deep neural networks. Following this, layer normalization is
applied to accelerate convergence, denoted as “Norm” in the figure [33]-

Output
Probabilities

Linear

Feed
Forward
Add&Norm
Add&Norm
Multi-Head Nx
Feed Attention
Forward AA A

A Add&Norm
Nx Add&Norm

Masked
Multi-Head Multi-Head
Attention Attention
111 11t
Positional D b—O Positional
Embedding A A Embedding
Input Output
Embedding Embedding
f f
Output
Inputs Embedding

Figure 1: Basic Architecture of Transformer

The self-attention mechanism is the core mechanism of the Transformer, with the goal of filtering out more effective
information. By capturing the correlations between vectors, it calculates the attention weights at each position during the
encoding process and obtains the latent vector representation of the entire sequence through weighted summation. The
computation process can be described as mapping the query vector and a series of key-value vector pairs to the output. The
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output vector is the weighted sum of the weights calculated based on the query and key applied to the value. The calculation
formula is shown in Equation (\l\)

T

Att(Q,K, V) = SOﬁmax(QK

Ji

In equation (), 0O,K,V represent the products of the aforementioned vectors and their corresponding matrix parameters.
d, is the dimension of the vector Key. When the dimensions of two vectors are large, the variance of their dot product will
also be relatively large, which may lead to the phenomenon of gradient vanishing. To maintain stable gradients during
training, it is necessary to divide it by \/Z . Compared to LSTM neural networks, Transformers have stronger capabilities
for modeling long sequences. In addition, Transformers can utilize self-attention mechanisms to achieve parallel computing,
significantly improving the training speed of the model.

Since music has different dimensions such as time and pitch, the relative positional relationships in music sequences are
particularly important for modeling. Based on this, using the original Transformer architecture as a baseline, we introduce a
relative attention mechanism (RA) with relative position encoding and further improve its algorithm to capture the relative
positional relationships and long—term structures in music sequences. The calculation formula is shown in Equation ()

4 (1)
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In equation (2), S represents the interaction between the relative embedding representation and the query vector, while
the rest of the equation has the same meaning as the self-attention mechanism formula.

The experiment used two datasets, JSB-Chorale and IMAESTR-O, to represent music as a series of discrete symbols in
different ways. For the former, a matrix is used for representation, with matrix rows corresponding to four different voice
parts and columns corresponding to discrete sixteenth notes. For the latter, MIDI events are used to represent the data. The
experiments achieved better results on the MAESTRO dataset, generating piano music with relatively consistent themes and
long-term structure, with sequence lengths of approximately 2,000 notes.

RA(Q.K.V) = softmax( W 2)

IV. Aesthetic evaluation of generated music

Harmony is primarily manifested through two aspects: the accompaniment of the melody by chords and harmonic
progression. The evaluation metrics for generating musical harmony primarily include three categories: chord histogram
entropy (CHE), the ratio of chord tones to non-chord tones (CTnCTR), and chord pitch scores. Chord histogram entropy is
calculated by normalizing the histogram of a chord sequence containing ¢ elements and then computing its entropy. The
formula is shown in Equation (\3\)

CHE = _Z p;Inp, 3)

i=1

In equation (3)), p, represents the relative probability of the i th element appearing in the chord sequence. This indicator
can intuitively evaluate the chord situation in the sequence. The fewer chords used in the sequence, the lower the value.
The specific calculation formula for the ratio of chord tones to non-chord tones is shown in equation (}4\)

n.+n
CTnCIR = -

“)

n, +n,

In equation (@), n. is the number of chord tones in the sequence, 7, is the number of non-chord tones in the sequence,
and n, is a subset of the number of non-chord tones n, in the sequence. The closer this value is to 1, the more
harmonious the chords in the sequence are.

The chord pitch score quantifies the chordal properties of the sequence through a scoring system, as follows: For
monophonic pitches, major/minor thirds, major/minor sixths, and perfect fourths/fifths in the sequence. The score is set to 1
for perfectly consonant intervals such as perfect unisons and perfect octaves, and O for other dissonant intervals. Additionally,
in terms of style consistency, the style compatibility metric is used to assess whether the generated music aligns with the
desired style. This is achieved by calculating the style configuration of the output sample and comparing it with the style
configuration of the reference sample to determine if the output music matches the desired style. Generally, the higher the
style compatibility between the output sample and the specified sample, the closer the styles of the two are. To better quantify
the style configuration of the sample, a label is introduced. The style configuration of the sample is a vector obtained by
flattening the standardized 2D histogram of the label in a specific manner. The specific calculation formula is shown in
Equation (5)):
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S={(t,—t,,p,—p,)]abenotes,a#b,0<t, —t <4, p, —p, <20} (5)

In equation (), t, represents the start time of the i th note, while p, is the MIDI number of the i th note.

V. Experimental Results and Analysis
V. A. Model Training Evaluation

Evaluating the quality of a piece of music is a subjective process, as everyone has different perceptions and preferences when
it comes to music. However, certain criteria can be used to assess the quality of music, which can help people better
understand and appreciate it.

First, melody and harmony are very important. A good melody should be able to capture the listener's attention and bring
them joy and excitement. Harmony should be harmonious, creating a sense of comfort and relaxation. Second, rhythm and
tempo are also crucial. A good rhythm should be able to inspire excitement and motivation, while a good tempo should
provide stability and reassurance.

In addition to the musical elements themselves, the performance and singing of the music are also very important. A good
performance or singing should allow the audience to feel the emotions and ideas of the music, making them feel a sense of
resonance and emotion. Additionally, the recording and production of music are also very important. A good recording and
production should make the music sound clear, clean, and high-quality.

Finally, when evaluating the quality of a piece of music, its innovation and uniqueness should also be considered. A good
musical work should make people feel fresh and interesting, making them feel that it is one-of-a-kind. In this paper, 20
professional listeners will be selected, who have experience in playing musical instruments or are seasoned music enthusiasts;
and 20 ordinary listeners, who have never played any musical instruments, will be asked to evaluate different works. The
aesthetic weight of professional listeners is 1.5 times that of ordinary listeners. The average score obtained according to this
scheme is the artificial score for a particular piece of music.

To compare the differences between Al aesthetic evaluation and human aesthetic evaluation, we conducted an experiment.
This paper selected 10 new MIDI music pieces and informed the listeners in advance about the characteristics of MIDI music,
thereby excluding factors such as emotion and timbre. These music pieces were then submitted to both Al and listeners for
aesthetic evaluation. The detailed aesthetic evaluation results are shown in Table |I. As can be seen from the table, there are
also differences in aesthetic evaluation among different listeners. Professional listeners showed significant differences in
aesthetic evaluations of different pieces of music and tended to prefer more complex music. Ordinary listeners, on the other
hand, were more enthusiastic about lively melodies and chords and were less inclined to give scores with significant
differences. Additionally, while there are some differences between Al aesthetic evaluations and those of listeners, the overall
differences are not significant. Al scores are closer to those of professional listeners, indicating that ordinary listeners'
aesthetic evaluations are more subjective and easily influenced by personal emotional factors or differing preferences. This
suggests that AI aesthetic evaluations and human aesthetic evaluations can complement each other, providing more
comprehensive and accurate results for music scoring.

Table 1: Different iterations of the music score

Music Style Professional audience score Average audience score Final score Model score
MIDI1 Gloom 93.7 90.4 92.5 93.6
MIDI2 Gloom 93.5 91.7 92.9 94.5
MIDI3 Warmth 88.5 90.3 89.4 87.9
MIDI4 Warmth 93.6 93.4 93.7 92.9
MIDI5 Brightness 85.8 93.4 89 87.7
MIDI6 Brightness 89.1 93.6 91 90.5
MIDI7 Enthusiasm 89.3 91.3 90.2 90.5
MIDI8 Enthusiasm 90.2 91.3 90.8 90.6
MIDI9 Peace 90.3 90.5 90.5 90.4
MIDI10 Peace 94.7 91.2 93.4 93.7

Specifically, the training termination time is controlled by adjusting the number of iterations of the Transformer model.
When the loss function reaches a certain threshold, training is stopped and music is generated. Defining this threshold
becomes a key issue. Since there are already two methods for evaluating the quality of a MIDI piece of music, training can be
stopped at different iteration counts, and different pieces can be generated according to the same rules. By scoring the
different pieces, the iteration count with the highest score can be identified. For each iteration count, different pieces are
selected, and their average scores are taken. The results are shown in Table 2.
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Table 2: Different iterations of the music score

Iteration number Artificial score Model score Number of music
10k Ungraded / 3
15k Ungraded 64.7 3
20k 61.4 64.2 4
25k 63.3 66.8 5
30k 66.5 70.0 7
35k 73.8 72 8
40k 75.2 78 9
50k 78.6 80 6
60k 774 73.4 6
80k 73.6 73.1 6
100k 73.9 73.6 6

V. B. Comparison of results from different models

To compare the performance of Transformer models and traditional neural network models in music composition, this paper
uses both models to expand the same musical segments and evaluates the aesthetic quality of the generated music. The
selected segments range from 2 to 32 seconds in length. Six short musical segments of varying lengths were selected for
expansion. It can be observed that as the original segment length increases, the music scores generated by both models also
increase. The comparison results are shown in Table . Additionally, it is evident that the models used in this paper
outperform those created using the Keras deep learning framework, with scores generally exceeding those of the Keras
models by more than 10 points.

Table 3: Keras depth learning framework is compared to transformer model

Music Duration Keras framework scores Transformer model score Fractional difference
Music 1 2s 63.3 76.3 12.2
Music 2 6s 64.5 75.5 11.3
Music 3 11s 65.2 77.8 12.0
Music 4 15s 65.3 774 12.4
Music 5 24s 65.0 71.5 12.2
Music 6 32s 66.9 78.9 12.4

V. C. Music Measurement Indicators

Experiments on validation set accuracy cannot fully prove the superiority of the model, as the harmony in music is more
closely related to human auditory experience due to the unique nature of music.

This paper uses three metrics —string, melody, and harmony —to measure musicality. The models compared were trained
on different datasets using three types of models: Transformer, LSMT, CNN, and GAN, and were compared with Bach's
original work metrics. The experimental results demonstrate that all three models are nearly identical to Bach's original work
in terms of musicality metrics, as shown in Figure 2. Due to differences in experimental parameter settings, the metrics in this
paper cannot be compared across models. However, when compared to Bach's original work, the models proposed in this
paper are nearly identical to Bach's metrics under the current evaluation metrics (with an error margin of less than 2%). The
Transformer model still has a 3% to 15% gap in musicality metrics compared to Bach's original works, demonstrating the
superiority of the Transformer-based music model. In the task of providing harmony for a given melody, the model proposed
in this paper is already very close to the level of human composers. Among them, the RS metric is a quantitative evaluation
of the generated music by professional musicians, normalized to a range of 0.2 to 1. h is the gamma sampling coefficient. The
ratio of chord tones to non-chord tones (CTnCTR). Melody-chord tone distance (MCTD). Note-chord consistency score
(PCS).

This paper measures the musicality of generated choral music. We selected Bach's choral music from the test set to
compare the metrics of the generated music, with the input being the notation of Bach's samples. The closer the metrics of the
generated music are to those of Bach's original work, the better the metrics. The figure shows that in terms of the metric
measuring the match between generated notes and chords, the generated samples are already very close to Bach's original
work. The model fits different harmonic distributions, leading to some dissonance in the generated harmonic relationships.
After transposition, the model's input pitches are only shifted up or down, and the interval relationships remain unchanged,
while interval relationships are directly related to harmony.
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Conclusion

Artificial intelligence is emerging as a key driver of transformation and creation in music. This paper establishes a
Transformer model that uses self-attention mechanisms to calculate inputs and outputs, thereby creating appropriate music.
By evaluating and comparing performance with representative models, the paper reveals the positive role of artificial
intelligence in advancing musical aesthetics and aesthetic perception. Research indicates that the model proposed in this
paper, when combined with human aesthetic judgment, can provide more comprehensive and accurate results for music
scoring. When comparing different models, it is evident that the Transformer model used in this paper outperforms other
models in terms of the quality of the music they generate. Additionally, under current evaluation metrics, the model achieves
results comparable to those of Bach's works, with an error margin of less than 2%.
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