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Abstract In recent years, China's high-speed train sets have developed rapidly, with numerous trains operating across the
nation's “Eight Vertical and Eight Horizontal” high-speed rail network, posing significant challenges for train operation,
maintenance, and inspection. This paper establishes a defect detection plan based on subway bogie inspection standards,
conducting inspection and analysis on components such as the axle box front cover and anti-roll torsion bar. Following the
general bogie defect detection process, the inspection plan designed by the operation depot is implemented. A defect detection
model is constructed using a convolutional neural network (CNN) algorithm. Through a three-stage detection process, defect
detection in the bogie region is accomplished. Performance metrics are used to quantify the model's performance on the test
dataset. On the test set v2, the predicted values for the three metrics—MAE, MAPE, and RMSE at a 5-step length—are 1.1125,
3.0421, and 1.9866, respectively, outperforming other models. Simultaneously, the model maintains tracking sensitivity above
90% during train emergency braking scenarios, demonstrating its high prediction accuracy.

Index Terms Convolutional Neural Network, Defect Object Detection, Tracking Sensitivity, Bogie Defect Detection

I. Introduction

With the rapid development of the urban rail transit industry, subways have become an indispensable mode of transportation
for commuters [1], [2]- As the running gear of subway vehicles, the operational status of bogies directly impacts train safety
[3]- A bogie primarily consists of the following components: the drive unit (comprising the motor and gearbox), the traction
device (comprising the traction pin and center pin assembly), the braking system (comprising the brake pipe and brake caliper),
the suspension system (comprising the air spring and primary spring assembly), the welded frame, and the wheelset axle box
assembly [4]-[7]-

As critical components, bogies are subject to stringent quality standards. During prolonged subway operations,
environmental factors inevitably impact bogies, making timely condition assessment and maintenance essential for train safety
[8]-[10]- Current subway bogie maintenance follows a preventive-focused approach, emphasizing preservation and
implementing a phased, full-lifecycle maintenance model [11]-[12]. Maintenance is conducted in parallel based on both
operational mileage and duration, typically categorized into: train inspections, biweekly inspections, quarterly inspections,
bogie scheduled repairs, bogie frame repairs, and bogie overhauls. Operating entities establish distinct maintenance cycles
according to varying operational environments and requirements [13]-[16]- However, traditional manual inspections suffer
from low efficiency and high costs, issues effectively addressed by advancements in artificial intelligence [17], [18]. Deep
convolutional neural networks (DCNNs) represent a widely adopted deep learning algorithm within AI. Capable of processing
complex image data, they find extensive application across various fields for defect detection, including industrial product
inspection, mining equipment diagnostics, and building surface flaw identification [19]-[22]- Similarly, DCNNs prove suitable
for subway bogie defect detection, where they classify anomalies by learning characteristic features from training datasets
[23]-[25] First, deep convolutional layers extract features from input images using different convolution kernels, enhancing
detection efficiency and accuracy [26], [27]- Subsequently, pooling layers reduce computational load by dimensionality
reduction on convolutional layer outputs [28]. Finally, fully connected layers classify output vectors to detect defects in subway
bogies [29], [30]:

Reference [31] investigates strength detection methods for subway vehicle bogies. Focusing on a new bogie structure,
simulation experiments validate that this strength detection approach outperforms traditional frame strength detection methods.
Reference [32] emphasizes that subway bogies are critical components ensuring stable vehicle operation. Based on a specific
subway bogie model, it analyzes strength reliability during design and manufacturing processes to enhance the fatigue
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reliability of bogie frames. Reference [33]] proposes a dual-light image-based temperature detection method for bogies. This
approach utilizes infrared thermal and visible light images for non-contact detection with high precision, demonstrating
practical application value through testing. Reference [34] focuses on the motor hanger weld zones of bogie bodies, conducting
research from practical maintenance and inspection perspectives. By detecting surface cracks and internal defects in bogies, it
demonstrates that welding defects shorten bogie service life, providing insights for optimizing maintenance strategies.
Reference [35] analyzes fundamental metro components and their inspection principles, proposing a comprehensive metro
inspection system architecture and development plan. Reference [36] introduces a low-cost system for measuring bogie
vibration and enabling rapid data acquisition. Experimental results indicate that the precise timing for maintenance execution
depends on the distance recorded per bogie, though mechanical durability varies.

Reference [37] designed a fault detection algorithm combining Faster R-CNN and a single-class convolutional neural
network for axle box cover mounting bolts in subways. Experimental validation demonstrated the algorithm's excellent speed
and accuracy. Reference [38] constructed a geometric fault diagnosis model for subway tracks based on convolutional neural
network models, analyzed the impact of structural hyperparameters on model performance, and revealed the model's
effectiveness through case studies. Reference [39] reviews the application of convolutional neural networks (CNNs) in the
railway maintenance industry. Based on this literature review, it outlines the latest techniques applying CNNs to railway track
maintenance, summarizes related tasks and challenges, and describes diverse CNN applications within this scope, including
rail surface defect identification and track component detection. Reference [40] proposes a novel crowd density estimation
method based on deep convolutional neural networks, demonstrating its robust performance in practical applications. The
aforementioned studies underscore the critical importance of bogie inspection for subway operational safety. They investigate
aspects such as bogie strength assessment, temperature monitoring, and surface defect detection, while exploring the
application of convolutional neural networks in bogie inspection.

This paper identifies key inspection locations on subway bogies. Following on-site project investigations, five specific
inspection points were designed: axle box front cover, anti-roll torsion bar, brake caliper, and others. The general workflow
for subway bogie defect detection was systematized, with inspection result reports automatically generated by the system. A
deep convolutional neural network was introduced, utilizing fully connected layers for image dimensionality reduction and
classification. Object detection based on R-CNN is achieved through three sequential stages: candidate region selection, CNN
feature extraction, and classification with bounding box regression. Building upon this foundation, the spatial pyramid pooling
layer, Fast R-CNN network, and Faster R-CNN network are proposed to optimize the original R-CNN model, thereby
enhancing the localization accuracy of object detection. By collecting data related to subway train bogies and setting up
simulation experiments, the effectiveness of the proposed algorithm is demonstrated by comparing it with five classical models
in terms of prediction accuracy and sensitivity. Subsequently, the accuracy of the algorithm is validated through real-vehicle
application cases.

II. Overall Design Plan for Defect Detection of Subway Bogies
II. A. Overall Framework of the Intelligent Inspection System for Subway Units

The bogie involves numerous inspection items distributed across various inspection locations, with each location requiring
distinct checks. Analysis must be conducted based on inspection standards to design an inspection plan.

II. A. 1) Inspection Items and Requirements

Following an on-site inspection of the project location, an analysis was conducted on the inspection locations and content.
Key challenges identified include: the large dimensions of the bogies, the extensive scope and numerous points requiring
inspection, limited access to certain shooting positions, variations in material, color, and shape of some components, and the
inclusion of measurement, identification, and visual inspection tasks among the inspection items.

(1) Axle Box Front Cover

This inspection involves analyzing the axle box front cover on the bogie. Requirements include:

- Correct orientation of anti-loosening steel wire ties with over 7 turns after securing

- Clear anti-loosening markings on fastening screws without misalignment

- Bolts fully tightened to 8.8 grade specifications

- Consistent batch numbers

- Rubber cover installed flush without lifting The rubber cover surface must be free of damage and wear, with the rubber
chain securely fixed. The axle end position must be correct with no missing parts, and the wire bracket must be installed with
the correct model.

(2) Anti-Roll Torsion Bar

Inspection requirements: Anti-loosening wire must be intact, bound in the correct direction, and have more than 7 turns
after binding. Anti-loosening markings on fastening screws must be clear and not misaligned, with bolts fully tightened. Spring
washers must be installed between the support bracket and fastening bolts. The washer opening must be less than half its
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thickness. The torsion arm shim, disc spring assembly (with convex surface facing the hex bolt head), stop block, and bolts
must be installed in the correct sequence. One end of each support bracket is triangular, and the other end is circular. Fastening
bolts must be grade 8.8 with matching batch numbers. The horizontal difference between the upper surfaces of the two-end
torsion arm process pins is <35mm.

(3) Brake Caliper

Inspection requirements: Anti-loosening markings on fastening screws are clear and not misaligned. Anti-loosening wire
is bundled in the correct direction with over 7 turns after bundling. Bolts are fully tightened, and fastening bolts are grade 8.8.
Batch numbers must match. In the released state, the clearance between the brake hose and caliper must not be less than 15mm.
The clearance between two adjacent brake hoses must not be less than 15mm. The release cable spiral hose must show no
cracks. Two black cable ties must be secured to the brake hose. The hose fitting on the caliper must face downward at an angle
of 0 to 45 degrees relative to the horizontal.

(4) Component History Information

Identify component serial numbers or scan QR codes to retrieve component details. Store and remotely share this information
to create history templates as required. Identify expired rubber components, lubricants, or other parts.

(5) Cables and Cable Ties

Inspection requirements: Cables must be in good condition with no tangling, burning, damage, or breakage. Clearance
between sensor cables and frame edges must be 3—10 mm. Spacing between moving parts and wiring must exceed 40 mm.
Cable ties must be correctly positioned, complete, and free from breakage.

II. A. 2) Inspection Equipment Layout

Due to their large size and weight, it is impractical to manually push bogies into and out of the inspection area at the start and
end of inspections. Therefore, an automatic assist device has been designed to replace manual labor in moving the bogies. At
the start of inspection, it automatically pushes the bogies into the inspection area, and upon completion, it pulls them out.

The bogie self-propulsion device comprises a large slide rail, large slide drive motor, small slide drive electric cylinder,
swing arm support cylinder, bogie towing wheels, towing wheel telescopic cylinder, and bogie towing swing arm. The specific
operating principle is as follows: The large slide is driven by a servo motor, reducer, gear, and rack mechanism. An additional
telescopic shaft is incorporated into the drive structure to ensure the bogie can be transported along the entire length of the
large slide guide rails. When the large slide table moves to the front end of the guide rail, the small slide table simultaneously
moves to the rear end driven by the electric cylinder. The swing arm cylinder of the towing mechanism retracts, lowering the
swing arm to a horizontal position. At this point, the bogie wheel telescopic cylinder retracts, pulling the bogie wheels inward
to avoid the track support components.

II. B. Overall Operational Process for Bogie Defect Detection

After completing the mechanical structure design of the bogie and the visual inspection system design, the following outlines
the general inspection process for the bogie. The operational flow of the inspection system is shown in Figure 1, with specific
steps listed below:

Step1: Manually push the bogie into the inspection area. Position sensors emit signals until the bogie is stopped by the first-
level stop barrier. Manually trigger the button to start the equipment.

Step2: The inspection equipment performs a self-check of all systems. If abnormalities are detected, manual troubleshooting
is conducted. If no issues are found, the first-stage stop cylinder releases, and the inspection system proceeds to the next phase.

Step3: The bogie's automatic assist mechanism smoothly advances it into the inspection zone. Contact sensors along the
track are sequentially triggered by the wheelsets until the second-stage stop is activated, causing the assist mechanism to
immediately halt.

Step4: The automatic bogie assist device retracts to its origin. Three robots, coordinated with overhead or ground rails,
perform bogie inspections. They verify correct installation of all components, check for loose fastening bolts, verify bolt grade
and batch numbers, confirm washer installation, inspect for misaligned anti-loosening marks, and verify integrity and correct
orientation of anti-loosening wire ties. They also measure bogie component dimensions.

Step5: During the collection of 2D image data and 3D point cloud data, computer vision processes and synchronously
analyzes the acquired data. It analyzes and statistically evaluates inspection and measurement results while recording all
process data of the equipment operation.

Step6: After the robot completes inspection of most bogie components in the designated area, the secondary stop cylinder
releases. The transfer cart of the assist mechanism transports the bogie to the completed inspection zone, then pushes it to the
designated area. The robot and track spindle return to their original positions.

Step7: The system aggregates the 2D and 3D inspection results of the bogie, compiles comprehensive statistics on the
finished bogie's inspection outcomes, and details the theoretical specifications and actual conditions for each inspection item.
It automatically generates an inspection results report.
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Step8: The bogie's automatic assist device retracts to its original position, awaiting the next bogie to be pushed in.
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Figure 1: Test system operation process

ITII. Object Detection Based on Deep Convolutional Neural Networks

III. A. Convolutional Neural Networks

III. A. 1) Fully Connected Networks

For neural networks, neurons interact through connections between them, and the manner of these connections determines the
network's complexity. Figure 2| depicts a fully connected neural network with three hidden layers. This network consists of
three components: the input layer, hidden layers, and output layer. Data enters through the input layer, undergoes processing
in the hidden layers, and finally exits via the output layer. As shown, in a fully connected network, every neuron in one layer
is connected to every neuron in the next layer. This results in a highly complex network structure.
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Input layer Hidden layer Output layer

Figure 2: Structure Diagram of the fully connected neural network

III. A. 2) Convolutional Neural Network Algorithm

Figure 3 illustrates the convolutional neural network (CNN) algorithm. A CNN typically consists of multiple convolutional
layers, multiple pooling layers, and multiple or a single fully connected layer [41]. The workflow of a convolutional neural
network is as follows: First, the image is scanned using convolutional kernels within the convolutional layer to extract the
spatial information of image features. Then, the image undergoes pooling operations through the pooling layer, reducing the
size of the convolved image via downsampling to obtain abstract features. The image is subsequently subjected to
dimensionality reduction through the fully connected layer, enabling final image classification.

Convolutional Pooling Convolutional ~ Pooling Fully
layer layer layer layer  connected layer

Figure 3: Basic Structure Diagram of Convolutional Neural Network

(1) Convolution Layer:

The convolution layer is a crucial structure in convolutional neural networks, enabling the abstraction of image features. By
performing local perception on various features within an image, it reduces the receptive field of image features. The
convolution kernel is the core component of the convolution layer, functioning as a filter. Before automatically extracting
image features, the convolutional layer must first configure the kernel's parameters, including kernel size, number of kernels,
and stride. As illustrated, the configured kernel is mapped onto the image and slid according to the specified stride. At each
position, the kernel's weights are multiplied by the corresponding image data points, and the results are summed. This process
can be expressed as:

r*q
conv,, =St (1)

Here, (x,y) represents the coordinates of the input image, pxg denotes the size of the convolution kernel, w, is the
weight value within the i th convolution kernel, and v, is the pixel value of the image corresponding to the i th convolution
kernel.

The formula for calculating the size of the convolved image is:

W—F+2P H-F+2P
W= S et Y

1 (2)
S

+1, H

(1) Convolution Layer

Here, W,H denote the image width and height, F'* F represents the convolution kernel size, S is the stride, and P
indicates the padding method.
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(2) Pooling Layer

Pooling performs downsampling on the image to reduce the resolution of the feature map, enabling the output feature map
to capture more abstract characteristics. Pooling layers typically follow convolutional layers. After applying convolution to an
image, feature maps are obtained, but the image parameters remain relatively numerous. Using these directly for training can
easily lead to overfitting. Therefore, pooling operations are essential to compress the image while preserving quality, thereby
reducing redundant detail parameters. The pooled image reduces its scale while preserving key information, significantly
enhancing the network's generalization ability during training and improving model test accuracy.

The formula for calculating the size of the pooled image is:

W=E+1,H=H_F+l 3)
S S

Analysis shows that after applying pooling operations to defect images, the image resolution decreases and defect features
become more abstract. Therefore, for larger convolutional neural networks, the number of pooling layers should be limited.

(3) Fully Connected Layer

The fully connected layer is typically positioned as the final layer in a convolutional neural network [42]. It compresses
images processed through multiple convolutions and pooling operations into one-dimensional information. The image data is
highly abstracted into features with greater information content, which are then fed into the fully connected layer to perform
image classification.

III. B. Object Detection Algorithms Based on Regional Proposals
III. B. 1) R-CNN
The R-CNN network performs object detection primarily through three stages: candidate region selection, CNN feature
extraction, and classification with bounding box regression.

(1) Candidate Region Selection Stage

The goal of candidate region selection is to extract candidate regions containing potential objects from the input image.
Traditional exhaustive methods for screening candidate boxes require evaluating every possible location, resulting in massive
computational overhead and generating numerous redundant candidates. The selective search algorithm enhances
computational efficiency by reducing redundant candidate regions. The R-CNN network model employs selective search for
candidate region extraction. This algorithm primarily utilizes image segmentation and multi-scale processing to segment the
input image, generating candidate regions that are subsequently normalized.

(2) CNN Feature Extraction Stage

Following candidate region selection, normalized candidate boxes undergo CNN feature extraction. Normalization is
essential because CNN's fully connected layers require fixed-size input images. R-CNN employs the simplest normalization
method: cropping and warping.

(3) Classification and Bounding Box Regression Stage

Features extracted via CNN in the previous stage are fed as feature vectors from the final fully connected layer into the
classifier and regressor for classification and bounding box prediction. A pre-trained linear SVM classifier handles feature
classification for R-CNN, with a trained SVM model dedicated to each category.

To enhance candidate box localization accuracy, the R-CNN network employs a candidate bounding box regression strategy.
The primary operation involves applying parameter transformations to candidate boxes obtained during fine-tuning training.

Candidate bounding box regression takes as input N training pairs {(P',G")}, ,, where P'=(P/,P/,P,,F,) denotes the

w2

i th candidate box, and G' =(G,,G,,G,,G,) represents the position of the ith ground truth object. P/, P, denote the x

wo

and y coordinates of the i th candidate box, while P!, P denote its width and height. Similarly, G',G’,G',G} denote the
x-coordinate, y-coordinate, width, and height of the i th ground truth bounding box, respectively. A transformation method
is required to bring the input candidate boxes closer to the ground truth boxes. However, if the overlap between a candidate
box and a ground truth box is minimal or non-existent, transforming the candidate box parameters becomes meaningless.
Therefore, an overlap ratio, known as the Intersection over Union (IoU), is defined.

The IoU formula is defined as:

ou =408 (4)
AUB

It can be seen that set C represents the intersection of sets 4 and B,so AUB can be transformed into A+B-C.
At this point, loU is expressed as:
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JoU =——— ()

When set to 0, it indicates that the two regions do not overlap. When set to 1, it indicates that the two regions completely
overlap. Values between 0 and 1 represent the degree of overlap between the two regions.

In R-CNN, setting this value to 0.6 and then performing parameter transformations on the candidate boxes yields a predicted
value G’ closer to the true bounding box G'. The transformation process is as follows:

G. =Pd (P)+P (6)
G, =Pd (P)+P (™)
G, = P exp(d, (P") (8)
G, = P, exp(d, (P") ©)

where d (P') and d_(P') transform the width and height, respectively, and d, (P") and d,(P") transform the center
of the candidate box. Denoting this collectively as d (P') , it essentially represents a linear function of the convolutional
feature map after CNN feature extraction. Assuming the candidate box undergoes pooling through the final layer of the CNN,
we have:

d.(P)=W!p(P") (10)

W, is the weight matrix, which is adjusted via the BP algorithm. The loss function is defined as:

Il
.Mz

Ly, (=Wl p(P) + 4[| W. | (11)

i

In the equation, # denotes the parameter transformation between P’ and G', specifically represented as follows:

_(G.-P)

‘£ 7 (12)
- (GP;’” (13)
= log(%') (14)
t, = log(% (15)

h

Candidate box regression can effectively improve the localization accuracy of candidate boxes and enhance the accuracy of
object detection through the aforementioned parameter transformation methods.

III. B. 2) Spatial Pyramid Pooling Layer

In R-CNN network models, due to the limitations of CNN's fully connected layers, input images must be uniformly sized.
Consequently, all candidate region images require normalization through cropping and warping before being fed into the CNN
for feature extraction. This process inevitably leads to incomplete preservation of image information, resulting in reduced
object detection accuracy. In 2015, researchers introduced Spatial Pyramid Pooling (SPP) to address both the size constraint
and storage issues, enabling multi-scale data input [43]. Since the convolutional layers in CNNs employ sliding window
operations on input images, they impose no size restrictions. However, fully connected layers do impose constraints. Therefore,
SPP is positioned between the convolutional and fully connected layers. The convolutional spatial pyramid pooling layer
converts CNN outputs into fixed-size feature vectors, enabling CNNs to process images of arbitrary input dimensions. The
spatial pyramid pooling layer structure is illustrated in Figure 4.
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Figure 4: Spatial pyramid pooling structure

III. B. 3) Fast R-CNN Network
(1) Region of Interest Pooling Layer

Spatial pyramid pooling employs multiple pooling layers of varying scales to process input feature maps, whereas ROI
Pooling uses only a single-scale pooling layer for this task. Consequently, it represents a special case within the spatial pyramid
pooling methodology. ROI Pooling differs from Spatial Pyramid Pooling in that it uses a single-scale pooling layer to
downsample the feature map matrix. It divides the convolutional features of each region of interest into 4x4 sub-blocks,
performing max pooling on each sub-block to yield a 16-dimensional feature vector. Additionally, the ROI Pooling layer
incorporates a bounding box mapping function, enabling backpropagation through the network model and thus resolving the
training challenges associated with SPP layers. ROI Pooling resolves the inability of spatial pyramid pooling to update weights
while retaining the advantage of spatial pyramid pooling layers—no restrictions on input image dimensions. Within the Fast
R-CNN architecture, the ROI Pooling layer serves two purposes: mapping regions of interest (ROIs) from the input image to
corresponding positions in the convolutional features, and feeding these convolutional feature regions into the pooling layer
to produce fixed-size features. These fixed features are ultimately sent to the fully connected layer.

(2) Multi-Task Training

The R-CNN network model employs a multi-stage pipeline for parameter training, as detailed in the R-CNN network
model section. This involves fine-tuning CNN parameters first, followed by training a linear SVM classifier, and finally
applying the trained weight connection matrix during bounding box regression. This approach is cumbersome, consumes
substantial storage resources, and hinders model transferability. Therefore, Ross Girshick adopted a multi-task simultaneous
training approach using a multi-task loss function. Specifically, within the CNN, a classification output layer replaces the
linear SVM classifier. This layer employs a Softmax classifier to output N+1 categories (where N represents object categories
and 1 denotes background). The introduction of inter-class competition through Softmax yields superior classification
performance compared to linear SVM. Additionally, Smooth Loss replaces bounding box regression. The multi-task loss
function in FastR-CNN is defined as follows:

L(p,u,t",v)=L, (p,u)+Au>1]L, (t",v) (16)

u

In the above equation, u represents the true class label, ¢“ is the correction vector, p denotes the probability of the
output class, and Vv is the parameter vector for candidate box transformation.
L, (p,u) is the classification loss function, defined as follows:

L, (p,u)=-logp, (17)
L, (t",v) denotes the candidate box transformation loss function, defined as follows:
L, ()= Z smoothL1(t! —v,) (18)
i=(x,y,w,h)

The smoothL1 function is defined as:

0.5x%, | x|<1

smoothL1(x) =
| x| —0.5,other
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III. B. 4) Faster R-CNN Network

PN networks are a type of network architecture based on fully convolutional networks (FCNs). The emergence of RPNs has
truly integrated the entire object detection process into a single deep learning network structure. The combination of RPNs
and Fast R-CNN forms the entirely new Faster R-CNN network architecture.

After adopting RPN, Faster R-CNN unified candidate box extraction, transformation, and classification. The schematic
diagram of the Faster R-CNN network architecture is shown in Figure 5 [44], [45]-

The RPN network loss function is defined as:

1

L({p,-},{z[»=NL2LM(p,-,p§‘>+z

cs i box

Z p[*Lbox (tr s tz* ) (20)

In the formula, i is the index of the anchor box within each mini-batch, p, corresponds to the predicted probability for
each anchor point, and p, represents the ground truth (GT) label (0 or 1) from the training set. ¢, denotes the vector of
predicted bounding box coordinates, while ¢ is the corresponding vector for the ground truth label. L, (p,,p,) is the loss
function for both target and non-target classes, defined as:

L, (p.,p,)=—log[p,p; +(1- p;)(1-p,)] (21)

L, . is the regression loss, defined as:

‘box
L, (4.6)) = R(t, ~1;) (22)

Here, R denotes the smooth L1 function, and p; L

‘box

present (=1), and otherwise no regression loss exists (=0).

indicates that regression loss exists only when the foreground is
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Figure 5: Schematic Diagram of the Faster R-CNN Network Structure

III. C. Experimental Setup and Results Analysis
III. C. 1) Experimental Setup
The experimental design comprises three components: dataset processing, experimental environment specifications, and
experimental evaluation metric descriptions.

(1) Dataset Processing

The data used in this paper was collected from the WTDS dataset v of a CRH5 EMU train over 10 days from May 10 to
May 19, 2022. The data was sampled at 1-minute intervals. Since only temperature status data was considered, the first bogie
of car 02 was selected as the research subject, with a total of 18 axle temperature measurement points, i.e., a=18.

(2) Evaluation Metrics

To quantitatively assess the performance of different models on test datasets v2 and v3, this chapter employs three commonly
used prediction evaluation metrics: Mean Absolute Error (MAE), Mean Absolute Percentage Error (MAPE), and Root Mean
Square Error (RMSE). These are specifically defined by Equations (\23\) to (25):

MAE=——3% I, -1, (23)
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RMSE:\/

(3) Experimental Environment
Experiments were conducted using the Faster R-CNN model and its comparative methods for short-term prediction of
subway train bogie status. Both the Faster R-CNN model and its comparative methods were implemented in Python, with all
deep learning architectures utilizing the PyTorch library. Training of the Faster R-CNN model was primarily performed on

GPUs.

III. C. 2) Analysis of Experimental Results

n_a

22

nxa_yi-

n

YY1,y

nxa’ ;o iz

(24)

(25)

This section compares the Faster R-CNN model with five classical models to demonstrate its effectiveness, primarily
evaluating prediction accuracy and sensitivity. Table E compares the prediction accuracy of the six models at different strides.
The Faster R-CNN model achieved the best MAE, MAPE, and RMSE metrics on both Test Set v2 and Test Set v3. For
instance, on Test Set v2, the predicted values for the three metrics at step lengths of 5, 10, 15, and 20 were (1.1125, 3.0421,
1.9866), (3.7451, 9.9345, 6.4285), (5.4896, 15.5985, 9.7852), and (6.4685, 19.1958, 11.5463), respectively, outperforming

other models.

Table 1: The analysis of the prediction accuracy of the six models

Test set v2

Model Index 5th 10th 15th 20th
MAE 11125 3.7451 5.4896 6.4635
Faster R-CNN MAPE (%) 3.0421 9.9345 15.5985 19.1958
RMSE 1.9866 6.4285 9.7852 11.5463
MAE 1.3048 42169 6.0496 7.0496
GRU MAPE (%) 3.3485 11.0485 17.0259 21.1648
RMSE 2.6485 7.5968 10.8236 12.3496
MAE 10485 4.3485 6.4985 7.3498
LSTM MAPE (%) 3.1936 12.1654 17.9463 222468
RMSE 25139 8.4698 11.5169 12.6954
MAE 3.5326 5.0425 6.8463 7.7836
KNN MAPE (%) 9.1248 15.4985 19.6116 22.8463
RMSE 5.6985 9.4325 11.6485 13.2648
MAE 4.2648 6.1348 8.1385 10.0485
SVR MAPE (%) 12.2698 19.5094 21.1648 28.7985
RMSE 6.3486 11.7498 14.0698 17.4985
MAE 47486 7.6426 11.4963 13.5985
ARIMA MAPE (%) 14.0698 23.9419 35.5498 46.0648
RMSE 7.6248 14.0485 20.4686 24.2498

Test set v3

Model Index Sth 10th 15th 20th
MAE 2.4985 4.1636 5.5498 6.2485
Faster R-CNN MAPE (%) 5.4996 10.5345 13.3498 17.9496
RMSE 43115 7.7966 9.4858 10.7485
MAE 6.7463 9.1866 10.1926 15.4963
GRU MAPE (%) 10.5436 17.0048 26.1478 29.4185
RMSE 7.4985 10.1648 15.6425 18.8563
MAE 7.9763 13.7485 11.4936 19.1698
LSTM MAPE (%) 9.4985 19.8463 227435 27.0189
RMSE 9.3452 15.2498 13.7452 20.9468
MAE 4.9342 14.6368 18.7496 26.5365
kNN MAPE (%) 23.4685 21.3648 33.0974 35.0425
RMSE 7.8462 16.4985 19.7465 30.0348
MAE 10.5749 13.1048 17.5361 227498
SVR MAPE (%) 25.8466 28.9482 38.3495 40.4348
RMSE 12.9455 15.8399 22.4985 26.8168
MAE 11.4698 17.1648 18.6485 25.4185
ARIMA MAPE (%) 31.1636 33.6436 44.5498 42.0985
RMSE 18.1648 21.6488 31.3489 35.1348

730



Research on Defect Detection Algorithm for Subway Bogies Based on Deep Convolutional Neural Networks

2

(1) Accuracy Comparison Across Different Methods

Due to space constraints, this paper presents prediction error metrics only for steps 5, 10, 15, and 20 on Test Set v2 and Test
Set v3. Comprehensive analysis reveals that prediction errors across different models gradually accumulate as the number of
prediction steps increases. For models like ARIMA and SVR, this error accumulation ultimately leads to significant deviations
in final predictions. Compared to other models, Faster R-CNN exhibits the slowest and smallest rate of error accumulation.
The MAE, MAPE, and RMSE values for all six models at steps 5, 10, 15, and 20 are plotted, with results for Test Set v2
shown in Figure \6\ and Test Set v3 in Figure M

Comparing Figures \6\ and 7 side-by-side reveals that under identical stride conditions, the Faster R-CNN model
outperforms the other five models in prediction accuracy, exhibiting the lowest MAE, RMSE, and MAPE metrics. Compared
to the GRU model, Faster R-CNN achieved improvements of 0.19-0.58 in MAE, 0.31-1.97 in MAPE, and 0.69-1.2 in RMSE.

Specifically, the Faster R-CNN model extracts spatial features of subway train bogies, enabling a more accurate description
of bogie state trends and thereby effectively improving prediction accuracy. Among these, neural network models (GRU,
LSTM) outperform traditional machine learning models (kNN, SVR) and time series models (ARIMA).
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Figure 7: The test set v; results

(2) Tracking Sensitivity
Since the primary status data for subway train bogies consists of temperature readings, and temperature data is inherently
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prone to abrupt changes as a streaming data type, any malfunction in the bogie will cause abnormal fluctuations in temperature
readings. This demonstrates that changes in axle temperature can be used to infer potential bogie failures.

To evaluate the tracking sensitivity of the Faster R-CNN model, this chapter selected continuous data segments representing
abnormal events (e.g., emergency braking) from dataset v to form dataset vr for experimentation. Predictions were made using
the Faster R-CNN model, GRU model, and LSTM model on dataset vr, with the prediction accuracy of each model statistically
analyzed as shown in Figure \8\

At t=700 in Figure 8], the train initiates emergency braking, causing a sudden temperature change. During this emergency
braking event, the Faster R-CNN model demonstrated the fastest tracking speed. Throughout the duration of the sudden change
from t=700 to t=720, the Faster R-CNN model maintained tracking prediction accuracy above 90%. This indicates that Faster
R-CNN can rapidly react to sudden train events, learn new spatio-temporal features, and deliver high-accuracy predictions
within a short timeframe. In contrast, GRU and LSTM models exhibit weaker initial responsiveness after emergency braking
but can regain their previous prediction accuracy after a learning period. The accuracy achieved by the GRU model after new
learning even surpassed that of the GCG model during certain periods. However, since the GRU model takes longer than the
Faster R-CNN model to recover its accuracy after a drop following sudden changes, the Faster R-CNN model better meets
the practical demands of high precision and rapid response in real-world applications.
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IV. Application Analysis of Defect Detection in Subway Bogies
1V. A. In-Vehicle Application Validation

The bogie defect detection algorithm developed in this paper is deployed across 55 CR400BF platform and intelligent EMU
trainsets. Assigned to multiple railway bureaus, these trains primarily operate on the Beijing-Shanghai, Beijing-Zhangjiakou,
Beijing-Guangzhou, and Beijing-Harbin lines, achieving a maximum operational speed of 350 km/h and accumulating a total
mileage of 1,243,640 kilometers.

The three-in—-one safety monitoring system integrates vibration, instability, and smoothness monitoring functions.
Components including axle boxes, anti-roll torsion bars, brake calipers, cables, and cable ties are connected to the host after
integration with pre-processors and instability/smoothness sensors. The four-in-one safety monitoring system combines
vibration, temperature, instability, and smoothness monitoring functions, eliminating the need for pre-processors.

To validate the accuracy of the bogie defect detection algorithm, this experiment carefully selected representative
components as test samples. Four images capturing different spatial positions of the same component affected by defects were
extracted, and each image underwent five detection runs. The actual defect distance values within each image were calculated
and compared against true values to derive relative errors. By comparing the error rate between the average values and true
values, the algorithm's accuracy and reliability were determined —lower error rates indicating greater precision and reliability.
Detailed experimental results are presented in the table below. Table @ shows the actual defect distances of the detected objects.

This algorithm demonstrated high precision in detecting defect locations. The error percentage for all detected samples was
controlled within 4%, with a minimum error of 1.86% and a maximum error of 3.33%. This indicates the algorithm's excellent
stability during repeated testing, effectively suppressing the interference of random errors on detection results. The high
proximity between the average detected values and the actual values demonstrates that this algorithm possesses reliable
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accuracy and practicality when handling defect target detection tasks.

Table 2: Test the actual distance of the object defect

. . Detection value | Detection value | Detection value | Detection value | Detection value | Average detection | Percentage
Detection location| True value
1/cm 2/cm 3/cm 4/cm S/cm value/cm of error
Shaft front cover 44.4988 42.8796 43.4969 44.3645 42.9425 43.4125 43.4192 2.4261%
Side roll 50.4969 49.8185 51.3985 52.4395 50.9342 52.5969 51.43752 1.8627%
Brake clamp 62.7485 58.4396 60.5185 63.4152 61.4955 59.4125 60.65626 3.3343%
Cable and band 67.4694 63.4184 66.4987 68.7495 62.4966 66.6485 65.56234 2.8266%

IV. B. Analysis of Bogie Defect Cases
IV.B. 1) Axle Box Front Cover

Spectral analysis of impact data from the 7-position and 8-position axle boxes during bearing early warning is shown in Figure
9. The dashed lines represent the first-order and second-order spectrum lines for outer ring faults, respectively. Based on
bearing structure calculations, at a rotational speed of 2024 rpm, the characteristic frequencies for the first- and second-order
outer ring faults are 246 Hz and 498 Hz, respectively. Spectral data indicates that the 7th position axle housing measurement
point on shaft 4 exhibits bearing outer ring 1x and 2x impact characteristics, while the 8th position on shaft 4 shows no impact
features at the same time. This confirms that the bearing alarm was caused by outer ring damage, providing critical information
for precise and rapid maintenance during subsequent inspections.
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Figure 9: 4 axis 7 and 8 axle box shock data time frequency analysis

IV. B. 2) Anti-roll bar

Data samples from the anti-roll bar measurement points were extracted and analyzed, as shown in Figure . Analysis of the
warning and pre-warning impact samples revealed: The anti-roll bar exhibits faint bearing outer ring impact characteristics,
with distinct impact features at frequencies of 250Hz and 500Hz. The analysis results align with the warning status, indicating
potential bearing abnormalities. Continuous monitoring of its condition changes is recommended, with priority inspection
during subsequent maintenance procedures.

733



Research on Defect Detection Algorithm for Subway Bogies Based on Deep Convolutional Neural Networks

0 200 400 600 800 1000
* After thd apti-side'rolley is ehrly warning T
~ 0273 1 > =
o0
~— L 1 | E
8 o2} | | -
= L I | |
= | |
£ 0.091 | , J
< L i ] |
| I
0.000 | I .
1 " 1 I N 1 I 1 — 1 L 1
- Pre-warning against latgral rolling |
% 0.42 _ | :
. B 1 | p
I |
2 028 | ; .
S04} : : T
el T _
0.00 - I i i .
1 M | I - 1 | 1 1 1 L 1
0 200 400 600 800 1000
Frequency/Hz

Figure 10: Analysis of frequency analysis of anti-lateral-roll torsion bar

V. Conclusion

This paper first designs an overall solution for metro bogie defect detection. Based on the established framework, it outlines
the comprehensive operational workflow for metro bogie defect detection. An object detection algorithm is constructed using
a convolutional neural network, with the Fast and Faster algorithms successively integrated to enhance detection performance.

To quantify the performance of different models on the test dataset, prediction evaluation metrics are employed. Experiments
validate the detection accuracy and tracking sensitivity of the proposed algorithm. Compared to the GRU model, the proposed
model achieves improvements of 0.19-0.58 in MAE, 0.31-1.97 in MAPE, and 0.69-1.2 in RMSE. The designed Faster R-
CNN model exhibits the lowest cumulative error rate and severity.

Applying the model to practical subway bogie defect detection, this paper analyzes defect detection effectiveness using axle
box front covers and anti-roll torsion bars as examples. The error percentage for all detection positions on subway bogies is
controlled within 4%, with a minimum error of 1.86% and a maximum error of 3.33%. This demonstrates the algorithm's
excellent stability and practicality in defect detection.
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