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Abstract In recent years, China's high-speed train sets have developed rapidly, with numerous trains operating across the 
nation's “Eight Vertical and Eight Horizontal” high-speed rail network, posing significant challenges for train operation, 
maintenance, and inspection. This paper establishes a defect detection plan based on subway bogie inspection standards, 
conducting inspection and analysis on components such as the axle box front cover and anti-roll torsion bar. Following the 
general bogie defect detection process, the inspection plan designed by the operation depot is implemented. A defect detection 
model is constructed using a convolutional neural network (CNN) algorithm. Through a three-stage detection process, defect 
detection in the bogie region is accomplished. Performance metrics are used to quantify the model's performance on the test 
dataset. On the test set v2, the predicted values for the three metrics—MAE, MAPE, and RMSE at a 5-step length—are 1.1125, 
3.0421, and 1.9866, respectively, outperforming other models. Simultaneously, the model maintains tracking sensitivity above 
90% during train emergency braking scenarios, demonstrating its high prediction accuracy. 
 
Index Terms Convolutional Neural Network, Defect Object Detection, Tracking Sensitivity, Bogie Defect Detection 

I. Introduction 
With the rapid development of the urban rail transit industry, subways have become an indispensable mode of transportation 
for commuters [1], [2]. As the running gear of subway vehicles, the operational status of bogies directly impacts train safety 
[3]. A bogie primarily consists of the following components: the drive unit (comprising the motor and gearbox), the traction 
device (comprising the traction pin and center pin assembly), the braking system (comprising the brake pipe and brake caliper), 
the suspension system (comprising the air spring and primary spring assembly), the welded frame, and the wheelset axle box 
assembly [4]-[7]. 

As critical components, bogies are subject to stringent quality standards. During prolonged subway operations, 
environmental factors inevitably impact bogies, making timely condition assessment and maintenance essential for train safety 
[8]-[10]. Current subway bogie maintenance follows a preventive-focused approach, emphasizing preservation and 
implementing a phased, full-lifecycle maintenance model [11]-[12]. Maintenance is conducted in parallel based on both 
operational mileage and duration, typically categorized into: train inspections, biweekly inspections, quarterly inspections, 
bogie scheduled repairs, bogie frame repairs, and bogie overhauls. Operating entities establish distinct maintenance cycles 
according to varying operational environments and requirements [13]-[16]. However, traditional manual inspections suffer 
from low efficiency and high costs, issues effectively addressed by advancements in artificial intelligence [17], [18]. Deep 
convolutional neural networks (DCNNs) represent a widely adopted deep learning algorithm within AI. Capable of processing 
complex image data, they find extensive application across various fields for defect detection, including industrial product 
inspection, mining equipment diagnostics, and building surface flaw identification [19]-[22]. Similarly, DCNNs prove suitable 
for subway bogie defect detection, where they classify anomalies by learning characteristic features from training datasets 
[23]-[25]. First, deep convolutional layers extract features from input images using different convolution kernels, enhancing 
detection efficiency and accuracy [26], [27]. Subsequently, pooling layers reduce computational load by dimensionality 
reduction on convolutional layer outputs [28]. Finally, fully connected layers classify output vectors to detect defects in subway 
bogies [29], [30]. 

Reference [31] investigates strength detection methods for subway vehicle bogies. Focusing on a new bogie structure, 
simulation experiments validate that this strength detection approach outperforms traditional frame strength detection methods. 
Reference [32] emphasizes that subway bogies are critical components ensuring stable vehicle operation. Based on a specific 
subway bogie model, it analyzes strength reliability during design and manufacturing processes to enhance the fatigue 
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reliability of bogie frames. Reference [33] proposes a dual-light image-based temperature detection method for bogies. This 
approach utilizes infrared thermal and visible light images for non-contact detection with high precision, demonstrating 
practical application value through testing. Reference [34] focuses on the motor hanger weld zones of bogie bodies, conducting 
research from practical maintenance and inspection perspectives. By detecting surface cracks and internal defects in bogies, it 
demonstrates that welding defects shorten bogie service life, providing insights for optimizing maintenance strategies. 
Reference [35] analyzes fundamental metro components and their inspection principles, proposing a comprehensive metro 
inspection system architecture and development plan. Reference [36] introduces a low-cost system for measuring bogie 
vibration and enabling rapid data acquisition. Experimental results indicate that the precise timing for maintenance execution 
depends on the distance recorded per bogie, though mechanical durability varies. 

Reference [37] designed a fault detection algorithm combining Faster R-CNN and a single-class convolutional neural 
network for axle box cover mounting bolts in subways. Experimental validation demonstrated the algorithm's excellent speed 
and accuracy. Reference [38] constructed a geometric fault diagnosis model for subway tracks based on convolutional neural 
network models, analyzed the impact of structural hyperparameters on model performance, and revealed the model's 
effectiveness through case studies. Reference [39] reviews the application of convolutional neural networks (CNNs) in the 
railway maintenance industry. Based on this literature review, it outlines the latest techniques applying CNNs to railway track 
maintenance, summarizes related tasks and challenges, and describes diverse CNN applications within this scope, including 
rail surface defect identification and track component detection. Reference [40] proposes a novel crowd density estimation 
method based on deep convolutional neural networks, demonstrating its robust performance in practical applications. The 
aforementioned studies underscore the critical importance of bogie inspection for subway operational safety. They investigate 
aspects such as bogie strength assessment, temperature monitoring, and surface defect detection, while exploring the 
application of convolutional neural networks in bogie inspection. 

This paper identifies key inspection locations on subway bogies. Following on-site project investigations, five specific 
inspection points were designed: axle box front cover, anti-roll torsion bar, brake caliper, and others. The general workflow 
for subway bogie defect detection was systematized, with inspection result reports automatically generated by the system. A 
deep convolutional neural network was introduced, utilizing fully connected layers for image dimensionality reduction and 
classification. Object detection based on R-CNN is achieved through three sequential stages: candidate region selection, CNN 
feature extraction, and classification with bounding box regression. Building upon this foundation, the spatial pyramid pooling 
layer, Fast R-CNN network, and Faster R-CNN network are proposed to optimize the original R-CNN model, thereby 
enhancing the localization accuracy of object detection. By collecting data related to subway train bogies and setting up 
simulation experiments, the effectiveness of the proposed algorithm is demonstrated by comparing it with five classical models 
in terms of prediction accuracy and sensitivity. Subsequently, the accuracy of the algorithm is validated through real-vehicle 
application cases. 

II. Overall Design Plan for Defect Detection of Subway Bogies 
II. A. Overall Framework of the Intelligent Inspection System for Subway Units 
The bogie involves numerous inspection items distributed across various inspection locations, with each location requiring 
distinct checks. Analysis must be conducted based on inspection standards to design an inspection plan. 
 
II. A. 1) Inspection Items and Requirements 
Following an on-site inspection of the project location, an analysis was conducted on the inspection locations and content. 
Key challenges identified include: the large dimensions of the bogies, the extensive scope and numerous points requiring 
inspection, limited access to certain shooting positions, variations in material, color, and shape of some components, and the 
inclusion of measurement, identification, and visual inspection tasks among the inspection items. 

(1) Axle Box Front Cover 
This inspection involves analyzing the axle box front cover on the bogie. Requirements include: 
- Correct orientation of anti-loosening steel wire ties with over 7 turns after securing 
- Clear anti-loosening markings on fastening screws without misalignment 
- Bolts fully tightened to 8.8 grade specifications 
- Consistent batch numbers 
- Rubber cover installed flush without lifting The rubber cover surface must be free of damage and wear, with the rubber 

chain securely fixed. The axle end position must be correct with no missing parts, and the wire bracket must be installed with 
the correct model. 

(2) Anti-Roll Torsion Bar 
Inspection requirements: Anti-loosening wire must be intact, bound in the correct direction, and have more than 7 turns 

after binding. Anti-loosening markings on fastening screws must be clear and not misaligned, with bolts fully tightened. Spring 
washers must be installed between the support bracket and fastening bolts. The washer opening must be less than half its 
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thickness. The torsion arm shim, disc spring assembly (with convex surface facing the hex bolt head), stop block, and bolts 
must be installed in the correct sequence. One end of each support bracket is triangular, and the other end is circular. Fastening 
bolts must be grade 8.8 with matching batch numbers. The horizontal difference between the upper surfaces of the two-end 
torsion arm process pins is ≤35mm. 

(3) Brake Caliper 
Inspection requirements: Anti-loosening markings on fastening screws are clear and not misaligned. Anti-loosening wire 

is bundled in the correct direction with over 7 turns after bundling. Bolts are fully tightened, and fastening bolts are grade 8.8. 
Batch numbers must match. In the released state, the clearance between the brake hose and caliper must not be less than 15mm. 
The clearance between two adjacent brake hoses must not be less than 15mm. The release cable spiral hose must show no 
cracks. Two black cable ties must be secured to the brake hose. The hose fitting on the caliper must face downward at an angle 
of 0 to 45 degrees relative to the horizontal. 

(4) Component History Information 
Identify component serial numbers or scan QR codes to retrieve component details. Store and remotely share this information 

to create history templates as required. Identify expired rubber components, lubricants, or other parts. 
(5) Cables and Cable Ties 
Inspection requirements: Cables must be in good condition with no tangling, burning, damage, or breakage. Clearance 

between sensor cables and frame edges must be 3–10 mm. Spacing between moving parts and wiring must exceed 40 mm. 
Cable ties must be correctly positioned, complete, and free from breakage. 

 
II. A. 2) Inspection Equipment Layout 
Due to their large size and weight, it is impractical to manually push bogies into and out of the inspection area at the start and 
end of inspections. Therefore, an automatic assist device has been designed to replace manual labor in moving the bogies. At 
the start of inspection, it automatically pushes the bogies into the inspection area, and upon completion, it pulls them out. 

The bogie self-propulsion device comprises a large slide rail, large slide drive motor, small slide drive electric cylinder, 
swing arm support cylinder, bogie towing wheels, towing wheel telescopic cylinder, and bogie towing swing arm. The specific 
operating principle is as follows: The large slide is driven by a servo motor, reducer, gear, and rack mechanism. An additional 
telescopic shaft is incorporated into the drive structure to ensure the bogie can be transported along the entire length of the 
large slide guide rails. When the large slide table moves to the front end of the guide rail, the small slide table simultaneously 
moves to the rear end driven by the electric cylinder. The swing arm cylinder of the towing mechanism retracts, lowering the 
swing arm to a horizontal position. At this point, the bogie wheel telescopic cylinder retracts, pulling the bogie wheels inward 
to avoid the track support components. 

 
II. B. Overall Operational Process for Bogie Defect Detection 
After completing the mechanical structure design of the bogie and the visual inspection system design, the following outlines 
the general inspection process for the bogie. The operational flow of the inspection system is shown in Figure 1, with specific 
steps listed below: 

Step1: Manually push the bogie into the inspection area. Position sensors emit signals until the bogie is stopped by the first-
level stop barrier. Manually trigger the button to start the equipment. 

Step2: The inspection equipment performs a self-check of all systems. If abnormalities are detected, manual troubleshooting 
is conducted. If no issues are found, the first-stage stop cylinder releases, and the inspection system proceeds to the next phase. 

Step3: The bogie's automatic assist mechanism smoothly advances it into the inspection zone. Contact sensors along the 
track are sequentially triggered by the wheelsets until the second-stage stop is activated, causing the assist mechanism to 
immediately halt. 

Step4: The automatic bogie assist device retracts to its origin. Three robots, coordinated with overhead or ground rails, 
perform bogie inspections. They verify correct installation of all components, check for loose fastening bolts, verify bolt grade 
and batch numbers, confirm washer installation, inspect for misaligned anti-loosening marks, and verify integrity and correct 
orientation of anti-loosening wire ties. They also measure bogie component dimensions. 

Step5: During the collection of 2D image data and 3D point cloud data, computer vision processes and synchronously 
analyzes the acquired data. It analyzes and statistically evaluates inspection and measurement results while recording all 
process data of the equipment operation. 

Step6: After the robot completes inspection of most bogie components in the designated area, the secondary stop cylinder 
releases. The transfer cart of the assist mechanism transports the bogie to the completed inspection zone, then pushes it to the 
designated area. The robot and track spindle return to their original positions. 

Step7: The system aggregates the 2D and 3D inspection results of the bogie, compiles comprehensive statistics on the 
finished bogie's inspection outcomes, and details the theoretical specifications and actual conditions for each inspection item. 
It automatically generates an inspection results report. 
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Step8: The bogie's automatic assist device retracts to its original position, awaiting the next bogie to be pushed in. 
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Figure 1: Test system operation process 

III. Object Detection Based on Deep Convolutional Neural Networks 
III. A. Convolutional Neural Networks 
III. A. 1) Fully Connected Networks 
For neural networks, neurons interact through connections between them, and the manner of these connections determines the 
network's complexity. Figure 2 depicts a fully connected neural network with three hidden layers. This network consists of 
three components: the input layer, hidden layers, and output layer. Data enters through the input layer, undergoes processing 
in the hidden layers, and finally exits via the output layer. As shown, in a fully connected network, every neuron in one layer 
is connected to every neuron in the next layer. This results in a highly complex network structure. 
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Figure 2: Structure Diagram of the fully connected neural network 

III. A. 2) Convolutional Neural Network Algorithm 
Figure 3 illustrates the convolutional neural network (CNN) algorithm. A CNN typically consists of multiple convolutional 
layers, multiple pooling layers, and multiple or a single fully connected layer [41]. The workflow of a convolutional neural 
network is as follows: First, the image is scanned using convolutional kernels within the convolutional layer to extract the 
spatial information of image features. Then, the image undergoes pooling operations through the pooling layer, reducing the 
size of the convolved image via downsampling to obtain abstract features. The image is subsequently subjected to 
dimensionality reduction through the fully connected layer, enabling final image classification. 
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Figure 3: Basic Structure Diagram of Convolutional Neural Network 

(1) Convolution Layer: 
The convolution layer is a crucial structure in convolutional neural networks, enabling the abstraction of image features. By 

performing local perception on various features within an image, it reduces the receptive field of image features. The 
convolution kernel is the core component of the convolution layer, functioning as a filter. Before automatically extracting 
image features, the convolutional layer must first configure the kernel's parameters, including kernel size, number of kernels, 
and stride. As illustrated, the configured kernel is mapped onto the image and slid according to the specified stride. At each 
position, the kernel's weights are multiplied by the corresponding image data points, and the results are summed. This process 
can be expressed as: 

 
*

,con
p q

x y i i
i

v w v  (1) 

Here, ( , )x y  represents the coordinates of the input image, p q  denotes the size of the convolution kernel, iw  is the 
weight value within the i th convolution kernel, and iv  is the pixel value of the image corresponding to the i th convolution 
kernel. 

The formula for calculating the size of the convolved image is: 

 2 2
1, 1

W F P H F P
W H

S S

   
     (2) 

(1) Convolution Layer 
Here, ,W H  denote the image width and height, *F F  represents the convolution kernel size, S  is the stride, and P  

indicates the padding method. 
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(2) Pooling Layer 
Pooling performs downsampling on the image to reduce the resolution of the feature map, enabling the output feature map 

to capture more abstract characteristics. Pooling layers typically follow convolutional layers. After applying convolution to an 
image, feature maps are obtained, but the image parameters remain relatively numerous. Using these directly for training can 
easily lead to overfitting. Therefore, pooling operations are essential to compress the image while preserving quality, thereby 
reducing redundant detail parameters. The pooled image reduces its scale while preserving key information, significantly 
enhancing the network's generalization ability during training and improving model test accuracy. 

The formula for calculating the size of the pooled image is: 

 1, 1
W F H F

W H
S S

 
     (3) 

Analysis shows that after applying pooling operations to defect images, the image resolution decreases and defect features 
become more abstract. Therefore, for larger convolutional neural networks, the number of pooling layers should be limited. 

(3) Fully Connected Layer 
The fully connected layer is typically positioned as the final layer in a convolutional neural network [42]. It compresses 

images processed through multiple convolutions and pooling operations into one-dimensional information. The image data is 
highly abstracted into features with greater information content, which are then fed into the fully connected layer to perform 
image classification. 

 
III. B. Object Detection Algorithms Based on Regional Proposals 
III. B. 1) R-CNN 
The R-CNN network performs object detection primarily through three stages: candidate region selection, CNN feature 
extraction, and classification with bounding box regression. 

(1) Candidate Region Selection Stage 
The goal of candidate region selection is to extract candidate regions containing potential objects from the input image. 

Traditional exhaustive methods for screening candidate boxes require evaluating every possible location, resulting in massive 
computational overhead and generating numerous redundant candidates. The selective search algorithm enhances 
computational efficiency by reducing redundant candidate regions. The R-CNN network model employs selective search for 
candidate region extraction. This algorithm primarily utilizes image segmentation and multi-scale processing to segment the 
input image, generating candidate regions that are subsequently normalized. 

(2) CNN Feature Extraction Stage 
Following candidate region selection, normalized candidate boxes undergo CNN feature extraction. Normalization is 

essential because CNN's fully connected layers require fixed-size input images. R-CNN employs the simplest normalization 
method: cropping and warping. 

(3) Classification and Bounding Box Regression Stage 
Features extracted via CNN in the previous stage are fed as feature vectors from the final fully connected layer into the 

classifier and regressor for classification and bounding box prediction. A pre-trained linear SVM classifier handles feature 
classification for R-CNN, with a trained SVM model dedicated to each category. 

To enhance candidate box localization accuracy, the R-CNN network employs a candidate bounding box regression strategy. 
The primary operation involves applying parameter transformations to candidate boxes obtained during fine-tuning training. 

Candidate bounding box regression takes as input N training pairs 1,...{( , )}i i
NP G , where ( , , , )i i i i i

x y w hP P P P P  denotes the 
i th candidate box, and ( , , , )i i i i i

x y w hG G G G G  represents the position of the i th ground truth object. ,i i
x yP P  denote the x 

and y coordinates of the i th candidate box, while ,i i
w hP P  denote its width and height. Similarly, , , ,i i i i

x y w hG G G G  denote the 
x-coordinate, y-coordinate, width, and height of the i th ground truth bounding box, respectively. A transformation method 
is required to bring the input candidate boxes closer to the ground truth boxes. However, if the overlap between a candidate 
box and a ground truth box is minimal or non-existent, transforming the candidate box parameters becomes meaningless. 
Therefore, an overlap ratio, known as the Intersection over Union (IoU), is defined. 

The IoU formula is defined as: 

 A B
IoU

A B





 (4) 

It can be seen that set C  represents the intersection of sets A  and B , so A B  can be transformed into A B C  . 
At this point, loU is expressed as: 
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 A B
IoU

A B C




 
 (5) 

When set to 0, it indicates that the two regions do not overlap. When set to 1, it indicates that the two regions completely 
overlap. Values between 0 and 1 represent the degree of overlap between the two regions. 

In R-CNN, setting this value to 0.6 and then performing parameter transformations on the candidate boxes yields a predicted 
value ˆ iG  closer to the true bounding box iG . The transformation process is as follows: 

 ˆ ( )i i i i
x w x xG P d P P   (6) 

 ˆ ( )i i i i
y h y yG P d P P   (7) 

 ˆ exp( ( ))i i i
w w wG P d P  (8) 

 ˆ exp( ( ))i i i
h h hG P d P  (9) 

where ( )iwd P  and ( )ixd P  transform the width and height, respectively, and ( )ixd P  and ( )iyd P  transform the center 
of the candidate box. Denoting this collectively as ( )id P  , it essentially represents a linear function of the convolutional 
feature map after CNN feature extraction. Assuming the candidate box undergoes pooling through the final layer of the CNN, 
we have: 

 * *( ) ( )i T id P W P  (10) 

*
TW  is the weight matrix, which is adjusted via the BP algorithm. The loss function is defined as: 

 
*

2 2
* * *

1

( ( )) || ||
N

i T i
W

i

L t W P W 


    (11) 

In the equation, *
it  denotes the parameter transformation between iP  and iG , specifically represented as follows: 
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i x x
x i

w

G P
t

P


  (12) 

 
( )i i

y yi
y i

h

G P
t

P


  (13) 

 log( )
i
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t

P
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 log( )
i

i h
h i

h

G
t

P
  (15) 

Candidate box regression can effectively improve the localization accuracy of candidate boxes and enhance the accuracy of 
object detection through the aforementioned parameter transformation methods. 

 
III. B. 2) Spatial Pyramid Pooling Layer 
In R-CNN network models, due to the limitations of CNN's fully connected layers, input images must be uniformly sized. 
Consequently, all candidate region images require normalization through cropping and warping before being fed into the CNN 
for feature extraction. This process inevitably leads to incomplete preservation of image information, resulting in reduced 
object detection accuracy. In 2015, researchers introduced Spatial Pyramid Pooling (SPP) to address both the size constraint 
and storage issues, enabling multi-scale data input [43]. Since the convolutional layers in CNNs employ sliding window 
operations on input images, they impose no size restrictions. However, fully connected layers do impose constraints. Therefore, 
SPP is positioned between the convolutional and fully connected layers. The convolutional spatial pyramid pooling layer 
converts CNN outputs into fixed-size feature vectors, enabling CNNs to process images of arbitrary input dimensions. The 
spatial pyramid pooling layer structure is illustrated in Figure 4. 
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Figure 4: Spatial pyramid pooling structure 

III. B. 3) Fast R-CNN Network 
(1) Region of Interest Pooling Layer 

Spatial pyramid pooling employs multiple pooling layers of varying scales to process input feature maps, whereas ROI 
Pooling uses only a single-scale pooling layer for this task. Consequently, it represents a special case within the spatial pyramid 
pooling methodology. ROI Pooling differs from Spatial Pyramid Pooling in that it uses a single-scale pooling layer to 
downsample the feature map matrix. It divides the convolutional features of each region of interest into 4×4 sub-blocks, 
performing max pooling on each sub-block to yield a 16-dimensional feature vector. Additionally, the ROI Pooling layer 
incorporates a bounding box mapping function, enabling backpropagation through the network model and thus resolving the 
training challenges associated with SPP layers. ROI Pooling resolves the inability of spatial pyramid pooling to update weights 
while retaining the advantage of spatial pyramid pooling layers—no restrictions on input image dimensions. Within the Fast 
R-CNN architecture, the ROI Pooling layer serves two purposes: mapping regions of interest (ROIs) from the input image to 
corresponding positions in the convolutional features, and feeding these convolutional feature regions into the pooling layer 
to produce fixed-size features. These fixed features are ultimately sent to the fully connected layer. 

(2) Multi-Task Training 
The R-CNN network model employs a multi-stage pipeline for parameter training, as detailed in the R-CNN network 

model section. This involves fine-tuning CNN parameters first, followed by training a linear SVM classifier, and finally 
applying the trained weight connection matrix during bounding box regression. This approach is cumbersome, consumes 
substantial storage resources, and hinders model transferability. Therefore, Ross Girshick adopted a multi-task simultaneous 
training approach using a multi-task loss function. Specifically, within the CNN, a classification output layer replaces the 
linear SVM classifier. This layer employs a Softmax classifier to output N+1 categories (where N represents object categories 
and 1 denotes background). The introduction of inter-class competition through Softmax yields superior classification 
performance compared to linear SVM. Additionally, Smooth Loss replaces bounding box regression. The multi-task loss 
function in FastR-CNN is defined as follows: 

 ( , , , ) ( , ) [ 1] ( , )u u
cls locL p u t v L p u u L t v    (16) 

In the above equation, u  represents the true class label, ut  is the correction vector, p  denotes the probability of the 
output class, and v  is the parameter vector for candidate box transformation. 

( , )clsL p u  is the classification loss function, defined as follows: 

 ( , ) logcls uL p u p   (17) 

( , )l cL t v
  denotes the candidate box transformation loss function, defined as follows: 

 
( , , , )

( , ) 1( )u u
loc i i

i x y w h

L t v smoothL t v


   (18) 

The smoothL1 function is defined as: 

 
20.5 ,| | 1

1( )
| | 0.5,other

x x
smoothL x

x

 
 


 (19) 
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III. B. 4) Faster R-CNN Network 
PN networks are a type of network architecture based on fully convolutional networks (FCNs). The emergence of RPNs has 
truly integrated the entire object detection process into a single deep learning network structure. The combination of RPNs 
and Fast R-CNN forms the entirely new Faster R-CNN network architecture. 

After adopting RPN, Faster R-CNN unified candidate box extraction, transformation, and classification. The schematic 
diagram of the Faster R-CNN network architecture is shown in Figure 5 [44], [45]. 

The RPN network loss function is defined as: 

 * * *1 1
({ },{ }) ( , ) ( , )i i cls i i i box i i

i icls box

L p t L p p p L t t
N N

    (20) 

In the formula, i  is the index of the anchor box within each mini-batch, ip  corresponds to the predicted probability for 
each anchor point, and *

ip  represents the ground truth (GT) label (0 or 1) from the training set. it  denotes the vector of 
predicted bounding box coordinates, while it

  is the corresponding vector for the ground truth label. ( , )ls i iL p pò  is the loss 
function for both target and non-target classes, defined as: 

 * * *( , ) log[ (1 )(1 )]cls i i i i i iL p p p p p p      (21) 

boxL  is the regression loss, defined as: 

 * *( , ) ( )box i i i iL t t R t t   (22) 

Here, R denotes the smooth L1 function, and *
i boxp L  indicates that regression loss exists only when the foreground is 

present (=1), and otherwise no regression loss exists (=0). 
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Figure 5: Schematic Diagram of the Faster R-CNN Network Structure 

III. C. Experimental Setup and Results Analysis 
III. C. 1) Experimental Setup 
The experimental design comprises three components: dataset processing, experimental environment specifications, and 
experimental evaluation metric descriptions. 

(1) Dataset Processing 
The data used in this paper was collected from the WTDS dataset v of a CRH5 EMU train over 10 days from May 10 to 

May 19, 2022. The data was sampled at 1-minute intervals. Since only temperature status data was considered, the first bogie 
of car 02 was selected as the research subject, with a total of 18 axle temperature measurement points, i.e., a=18. 

(2) Evaluation Metrics 
To quantitatively assess the performance of different models on test datasets v2 and v3, this chapter employs three commonly 

used prediction evaluation metrics: Mean Absolute Error (MAE), Mean Absolute Percentage Error (MAPE), and Root Mean 
Square Error (RMSE). These are specifically defined by Equations (23) to (25): 

 *
, ,

1 1

1 n a

i j i j
j i

MAE T T
n a  

 
   (23) 
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 * 2
, ,

1 1

1
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i j i j
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RMSE T T
n a  

 
   (25) 

(3) Experimental Environment 
Experiments were conducted using the Faster R-CNN model and its comparative methods for short-term prediction of 

subway train bogie status. Both the Faster R-CNN model and its comparative methods were implemented in Python, with all 
deep learning architectures utilizing the PyTorch library. Training of the Faster R-CNN model was primarily performed on 
GPUs. 

 
III. C. 2) Analysis of Experimental Results 
This section compares the Faster R-CNN model with five classical models to demonstrate its effectiveness, primarily 
evaluating prediction accuracy and sensitivity. Table 1 compares the prediction accuracy of the six models at different strides. 
The Faster R-CNN model achieved the best MAE, MAPE, and RMSE metrics on both Test Set v2 and Test Set v3. For 
instance, on Test Set v2, the predicted values for the three metrics at step lengths of 5, 10, 15, and 20 were (1.1125, 3.0421, 
1.9866), (3.7451, 9.9345, 6.4285), (5.4896, 15.5985, 9.7852), and (6.4685, 19.1958, 11.5463), respectively, outperforming 
other models. 

Table 1: The analysis of the prediction accuracy of the six models 

Model Index Test set v2 
5th 10th 15th 20th 

Faster R-CNN 
MAE 1.1125 3.7451 5.4896 6.4685 

MAPE (%) 3.0421 9.9345 15.5985 19.1958 
RMSE 1.9866 6.4285 9.7852 11.5463 

GRU 
MAE 1.3048 4.2169 6.0496 7.0496 

MAPE (%) 3.3485 11.0485 17.0259 21.1648 
RMSE 2.6485 7.5968 10.8236 12.3496 

LSTM 
MAE 1.2485 4.3485 6.4985 7.3498 

MAPE (%) 3.1936 12.1654 17.9463 22.2468 
RMSE 2.5139 8.4698 11.5169 12.6954 

kNN 
MAE 3.5326 5.2425 6.8463 7.7836 

MAPE (%) 9.1248 15.4985 19.6116 22.8463 
RMSE 5.6985 9.4325 11.6485 13.2648 

SVR 
MAE 4.2648 6.1348 8.1385 10.0485 

MAPE (%) 12.2698 19.5094 21.1648 28.7985 
RMSE 6.3486 11.7498 14.0698 17.4985 

ARIMA 
MAE 4.7486 7.6426 11.4963 13.5985 

MAPE (%) 14.0698 23.9419 35.5498 46.0648 
RMSE 7.6248 14.0485 20.4686 24.2498 

Model Index Test set v3 
5th 10th 15th 20th 

Faster R-CNN 
MAE 2.4985 4.1636 5.5498 6.2485 

MAPE (%) 5.4996 10.5345 13.3498 17.9496 
RMSE 4.3115 7.7966 9.4858 10.7485 

GRU 
MAE 6.7463 9.1866 10.1926 15.4963 

MAPE (%) 10.5436 17.0048 26.1478 29.4185 
RMSE 7.4985 10.1648 15.6425 18.8563 

LSTM 
MAE 7.9763 13.7485 11.4936 19.1698 

MAPE (%) 9.4985 19.8463 22.7435 27.0189 
RMSE 9.3452 15.2498 13.7452 20.9468 

kNN 
MAE 4.9342 14.6368 18.7496 26.5365 

MAPE (%) 23.4685 21.3648 33.0974 35.0425 
RMSE 7.8462 16.4985 19.7465 30.0348 

SVR 
MAE 10.5749 13.1048 17.5361 22.7498 

MAPE (%) 25.8466 28.9482 38.3495 40.4348 
RMSE 12.9455 15.8399 22.4985 26.8168 

ARIMA 
MAE 11.4698 17.1648 18.6485 25.4185 

MAPE (%) 31.1636 33.6436 44.5498 42.0985 
RMSE 18.1648 21.6488 31.3489 35.1348 
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(1) Accuracy Comparison Across Different Methods 
Due to space constraints, this paper presents prediction error metrics only for steps 5, 10, 15, and 20 on Test Set v2 and Test 

Set v3. Comprehensive analysis reveals that prediction errors across different models gradually accumulate as the number of 
prediction steps increases. For models like ARIMA and SVR, this error accumulation ultimately leads to significant deviations 
in final predictions. Compared to other models, Faster R-CNN exhibits the slowest and smallest rate of error accumulation. 
The MAE, MAPE, and RMSE values for all six models at steps 5, 10, 15, and 20 are plotted, with results for Test Set v2 
shown in Figure 6 and Test Set v3 in Figure 7. 

Comparing Figures 6 and 7 side-by-side reveals that under identical stride conditions, the Faster R-CNN model 
outperforms the other five models in prediction accuracy, exhibiting the lowest MAE, RMSE, and MAPE metrics. Compared 
to the GRU model, Faster R-CNN achieved improvements of 0.19–0.58 in MAE, 0.31–1.97 in MAPE, and 0.69–1.2 in RMSE. 

Specifically, the Faster R-CNN model extracts spatial features of subway train bogies, enabling a more accurate description 
of bogie state trends and thereby effectively improving prediction accuracy. Among these, neural network models (GRU, 
LSTM) outperform traditional machine learning models (kNN, SVR) and time series models (ARIMA). 

 

Figure 6: The test set v2 results 

 

Figure 7: The test set v3 results 

(2) Tracking Sensitivity 
Since the primary status data for subway train bogies consists of temperature readings, and temperature data is inherently 
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prone to abrupt changes as a streaming data type, any malfunction in the bogie will cause abnormal fluctuations in temperature 
readings. This demonstrates that changes in axle temperature can be used to infer potential bogie failures. 

To evaluate the tracking sensitivity of the Faster R-CNN model, this chapter selected continuous data segments representing 
abnormal events (e.g., emergency braking) from dataset v to form dataset vr for experimentation. Predictions were made using 
the Faster R-CNN model, GRU model, and LSTM model on dataset vr, with the prediction accuracy of each model statistically 
analyzed as shown in Figure 8. 

At t=700 in Figure 8, the train initiates emergency braking, causing a sudden temperature change. During this emergency 
braking event, the Faster R-CNN model demonstrated the fastest tracking speed. Throughout the duration of the sudden change 
from t=700 to t=720, the Faster R-CNN model maintained tracking prediction accuracy above 90%. This indicates that Faster 
R-CNN can rapidly react to sudden train events, learn new spatio-temporal features, and deliver high-accuracy predictions 
within a short timeframe. In contrast, GRU and LSTM models exhibit weaker initial responsiveness after emergency braking 
but can regain their previous prediction accuracy after a learning period. The accuracy achieved by the GRU model after new 
learning even surpassed that of the GCG model during certain periods. However, since the GRU model takes longer than the 
Faster R-CNN model to recover its accuracy after a drop following sudden changes, the Faster R-CNN model better meets 
the practical demands of high precision and rapid response in real-world applications. 

 

Figure 8: Sensitivity comparison of step 10th 

IV. Application Analysis of Defect Detection in Subway Bogies 
IV. A. In-Vehicle Application Validation 
The bogie defect detection algorithm developed in this paper is deployed across 55 CR400BF platform and intelligent EMU 
trainsets. Assigned to multiple railway bureaus, these trains primarily operate on the Beijing-Shanghai, Beijing-Zhangjiakou, 
Beijing-Guangzhou, and Beijing-Harbin lines, achieving a maximum operational speed of 350 km/h and accumulating a total 
mileage of 1,243,640 kilometers. 

The three-in-one safety monitoring system integrates vibration, instability, and smoothness monitoring functions. 
Components including axle boxes, anti-roll torsion bars, brake calipers, cables, and cable ties are connected to the host after 
integration with pre-processors and instability/smoothness sensors. The four-in-one safety monitoring system combines 
vibration, temperature, instability, and smoothness monitoring functions, eliminating the need for pre-processors. 

To validate the accuracy of the bogie defect detection algorithm, this experiment carefully selected representative 
components as test samples. Four images capturing different spatial positions of the same component affected by defects were 
extracted, and each image underwent five detection runs. The actual defect distance values within each image were calculated 
and compared against true values to derive relative errors. By comparing the error rate between the average values and true 
values, the algorithm's accuracy and reliability were determined—lower error rates indicating greater precision and reliability. 
Detailed experimental results are presented in the table below. Table 2 shows the actual defect distances of the detected objects. 

This algorithm demonstrated high precision in detecting defect locations. The error percentage for all detected samples was 
controlled within 4%, with a minimum error of 1.86% and a maximum error of 3.33%. This indicates the algorithm's excellent 
stability during repeated testing, effectively suppressing the interference of random errors on detection results. The high 
proximity between the average detected values and the actual values demonstrates that this algorithm possesses reliable 
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accuracy and practicality when handling defect target detection tasks. 

Table 2: Test the actual distance of the object defect 

Detection location True value 
Detection value 

1/cm 
Detection value 

2/cm 
Detection value 

3/cm 
Detection value 

4/cm 
Detection value 

5/cm 
Average detection 

value/cm 
Percentage 

of error 
Shaft front cover 44.4988 42.8796 43.4969 44.3645 42.9425 43.4125 43.4192 2.4261% 

Side roll 50.4969 49.8185 51.3985 52.4395 50.9342 52.5969 51.43752 1.8627% 
Brake clamp 62.7485 58.4396 60.5185 63.4152 61.4955 59.4125 60.65626 3.3343% 

Cable and band 67.4694 63.4184 66.4987 68.7495 62.4966 66.6485 65.56234 2.8266% 
 
IV. B. Analysis of Bogie Defect Cases 
IV. B. 1) Axle Box Front Cover 
Spectral analysis of impact data from the 7-position and 8-position axle boxes during bearing early warning is shown in Figure 
9. The dashed lines represent the first-order and second-order spectrum lines for outer ring faults, respectively. Based on 
bearing structure calculations, at a rotational speed of 2024 rpm, the characteristic frequencies for the first- and second-order 
outer ring faults are 246 Hz and 498 Hz, respectively. Spectral data indicates that the 7th position axle housing measurement 
point on shaft 4 exhibits bearing outer ring 1x and 2x impact characteristics, while the 8th position on shaft 4 shows no impact 
features at the same time. This confirms that the bearing alarm was caused by outer ring damage, providing critical information 
for precise and rapid maintenance during subsequent inspections. 

 

Figure 9: 4 axis 7 and 8 axle box shock data time frequency analysis 

IV. B. 2) Anti-roll bar 
Data samples from the anti-roll bar measurement points were extracted and analyzed, as shown in Figure 10. Analysis of the 
warning and pre-warning impact samples revealed: The anti-roll bar exhibits faint bearing outer ring impact characteristics, 
with distinct impact features at frequencies of 250Hz and 500Hz. The analysis results align with the warning status, indicating 
potential bearing abnormalities. Continuous monitoring of its condition changes is recommended, with priority inspection 
during subsequent maintenance procedures. 
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Figure 10: Analysis of frequency analysis of anti-lateral-roll torsion bar 

V. Conclusion 
This paper first designs an overall solution for metro bogie defect detection. Based on the established framework, it outlines 
the comprehensive operational workflow for metro bogie defect detection. An object detection algorithm is constructed using 
a convolutional neural network, with the Fast and Faster algorithms successively integrated to enhance detection performance. 

To quantify the performance of different models on the test dataset, prediction evaluation metrics are employed. Experiments 
validate the detection accuracy and tracking sensitivity of the proposed algorithm. Compared to the GRU model, the proposed 
model achieves improvements of 0.19–0.58 in MAE, 0.31–1.97 in MAPE, and 0.69–1.2 in RMSE. The designed Faster R-
CNN model exhibits the lowest cumulative error rate and severity. 

Applying the model to practical subway bogie defect detection, this paper analyzes defect detection effectiveness using axle 
box front covers and anti-roll torsion bars as examples. The error percentage for all detection positions on subway bogies is 
controlled within 4%, with a minimum error of 1.86% and a maximum error of 3.33%. This demonstrates the algorithm's 
excellent stability and practicality in defect detection. 
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