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Abstract Fine-grained image classification (FGIC) is increasingly important in computer vision, driven by its extensive use
across various domains. However, existing methods often struggle to achieve both discriminative feature representation and
semantic consistency, primarily due to subtle inter-class differences, complex object structures, and background clutter. To
tackle these issues, this paper proposes a innovative framework named CARE-Net (Cross-level Adaptive Recalibration and
Enhancement Network), which enhances feature learning through three synergistic mechanisms: multi-scale fusion, cross-
layer guidance, and explicit feature reconstruction. Specifically, CARE-Net extracts multi-scale features from different
semantic levels and employs a guidance enhancement module to recalibrate shallow features using high-level semantic cues.
A lightweight attention-based module is then introduced to adaptively fuse features across scales, reinforcing responses in key
discriminative regions. Finally, an auxiliary reconstruction branch is incorporated to enforce structural consistency across
semantic layers under supervision. Experimental results on the CUB-200-2011 and Stanford Dogs datasets show that CARE-
Net achieves Top-1 classification accuracies of 76.3% and 75.8%, respectively, outperforming several mainstream baselines.
Ablation experiments provide further evidence for the effectiveness and complementary nature of each module. These results
demonstrate that CARE-Net provides an efficient and interpretable solution for FGIC in complex visual environments.

Index Terms Fine-grained Image Classification, Multi-scale Fusion, Feature Reconstruction, Semantic Guidance.

I. Introduction

Fine-grained image classification focus on recognizing subcategories that belong to the same coarse—grained class but exhibit
subtle visual differences. Compared to conventional image classification, FGIC typically involves objects with highly similar
structures or textures, such as various species of birds[1], dogs[2], insects[3], and vehicles[4]. The key challenge lies in
extracting discriminative features from minor local variations. As illustrated in Figure 1, FGIC faces two major difficulties.
On the one hand, inter-class differences are minimal, with many subcategories differing only slightly in color, shape, or texture,
making them difficult to differentiate. On the other hand, intra-class variations are large, as images within the same
subcategory may vary significantly due to differences in viewpoint, occlusion, and complex backgrounds. This “low inter-
class variance and high intra—class diversity” challenges global representation methods, demanding stronger perception of
fine-grained local features.

category02 category03

Figure 1: Low inter-class difference and high intra-class variation
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Despite the unprecedented success of CNNs in general image classification tasks, several key challenges persist in fine-
grained image classification (FGIC). One significant issue is that many models fail to establish effective semantic guidance
from high-level features to lower layers, resulting in shallow features struggling to focus on discriminative regions. This
shortcoming undermines the task-oriented specificity and discriminative quality of the overall feature representation. To
address this, several strategies have been explored, including cross-layer consistency regularization[5]], [6], multi-stage
guidance training[7], [8], [9]. and multi-branch collaborative fusion[10]-[13]. Although these methods have achieved
progress at different levels, they often suffer from limitations such as simplistic fusion strategies, weakly coupled guidance
mechanisms, or insufficient modeling of contributions from heterogeneous semantic layers. These limitations hinder the
effective integration of multi-scale information and restrict the model’s capacity to improve its discriminative performance
through cross-layer collaboration.

In addition, conventional multi-scale fusion strategies often rely on feature concatenation[|14], [ 15]or pyramid structures[ 16]
to integrate information across scales. These methods aim to enhance the robustness and granularity of visual representations
by combining features from different receptive fields. However, when semantic discrepancies and relative contributions
between scales are not adequately considered, direct fusion may lead to redundancy or semantic conflicts, ultimately degrading
classification performance. On the one hand, fixed fusion strategies lack adaptive control, making it difficult to exploit the
most relevant scale-specific information. On the other hand, approaches that depend solely on shallow or single-scale salient
regions often overlook the guiding role of high-level semantics, resulting in incomplete or inconsistent target representations.

Finally, most existing methods rely on classification output as the sole supervisory signal, which limits the enforcement of
semantic consistency across layers. Here, structural integrity refers to the preservation of spatial arrangements and local details
of object parts across different feature layers, while semantic consistency denotes the alignment of high-level semantic
meanings across multi-scale or cross-layer feature representations, ensuring that different layers focus on the same category-
relevant regions.

To overcome the challenges mentioned above, this paper introduces a novel multi-scale enhancement framework for fine-
grained image classification, termed CARE-Net. It is designed to tackle three core issues in FGIC: local discriminative
representation enhancement, cross-layer semantic guidance, and structural consistency reconstruction. By constructing a
unified semantic guidance mechanism and an adaptive fusion strategy, the proposed framework enables effective collaborative
representation across multiple feature scales.

Built upon ResNet-50 as the backbone, CARE-Net first extracts multi-scale features from different semantic layers. A
cross-layer guidance enhancement module is then introduced to explicitly recalibrate low-level detail features using high-
level semantic information, thereby enhancing the model’s focus on discriminative regions. Subsequently, a scale-adaptive
fusion module is employed, which leverages a lightweight attention mechanism to dynamically learn the importance of each
scale and perform precise feature fusion. To further improve consistency, an explicit reconstruction branch is incorporated to
reconstruct semantic features at each layer and enforce a reconstruction loss, thereby aligning structural representations across
scales and enhancing the model’s overall discriminative capacity. The main contributions of this paper are summarized as
follows:

(1) A unified network architecture is proposed to jointly model multi-scale enhancement and cross-layer collaboration,
significantly improving both discriminative capability and feature consistency in FGIC.

(2) A lightweight cross-layer guidance module, termed GuidedBoost, is designed to explicitly recalibrate shallow features
using high-level semantics, thereby enhancing the response to key discriminative regions.

(3) A scale-adaptive fusion mechanism is introduced, which dynamically adjusts the contributions of different semantic
layers through a lightweight attention-based strategy.

(4) An explicit structural reconstruction branch is incorporated, which enforces multi-level feature consistency via
reconstruction loss, improving structural awareness and robustness.

(5) Comprehensive experiments on two benchmark datasets highlight the superior performance of the proposed model,
confirming its ability to improve both discriminative representation and structural consistency.

II. Related work
II. A. Fine-grained image classification methods

Existing FGIC methods are typically categorized based on the level of supervision into two groups: strongly supervised and
weakly supervised approaches. Strongly supervised methods (e.g., Part-based R-CNN[17], PS-CNN[18]) rely on manually
annotated fine-grained labels, such as part locations, bounding boxes, or key points. Their core idea is to leverage explicit
structural cues to guide the model’s attention toward discriminative regions. Although these methods achieve high
classification accuracy, their reliance on detailed annotations significantly limits their scalability and applicability in cross-
domain or large-scale scenarios. In contrast, weakly supervised methods depend solely on image-level labels, eliminating the
need for costly part annotations or localization information. Current mainstream research in this area falls into two main
categories: region proposal methods, which localize discriminative regions under weak supervision [19], and attention-based
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methods, which learn to highlight informative regions without explicit annotations [20], [21]. Compared to strongly supervised
approaches, weakly supervised strategies offer greater scalability and practicality, as they can guide the model to attend to key

regions using only coarse-grained labels. Consequently, they have emerged as an increasingly prominent topic in recent FGIC
research.

CARE-Net: A Fine-Grained Image Classification Network via Cross-Layer Semantic Recalibration

II. B. Multi-scale feature fusion mechanisms

Multi-scale feature fusion is a fundamental component in improving the effectiveness of fine-grained image recognition.
Features extracted from different semantic layers carry distinct representational capacities; thus, effectively integrating these
heterogeneous features is essential for enhancing the model’s fine-grained discriminative ability. A representative early
approach is the FPN [22], which introduces a top-down pathway structure in object detection to achieve hierarchical
compensation and fusion across feature scales. This concept was later adapted to fine—grained classification tasks to enable
joint modeling of local details and global semantics. For instance, Li et al. [23] proposed a spatially aligned feature pyramid
network that enhances inter—class discriminability through spatial calibration and contrastive learning. Other works, such as
TASN [24] and NTS-Net [25], integrate attention or region selection to strengthen multi-scale interactions. From a design
perspective, fusion methods can be grouped into static structures and dynamic mechanisms. Static methods like FPN and
PAFPN [26] follow predefined paths for feature integration, offering simplicity but limited flexibility. Dynamic mechanisms
use attention modules to adaptively weight features based on context, providing better robustness for subtle categories.
Bidirectional designs such as BiFPN [27] further improve interaction by enabling both top-down and bottom-up information
flow.

Inspired by these studies, this paper proposes a scale-adaptive fusion module that jointly leverages global multi-scale
features and high-level semantic cues. In contrast to static pyramids or existing dynamic attention mechanisms, the proposed
module dynamically models the importance of each scale conditioned on semantic relevance, rather than relying solely on
saliency. This semantic-conditioned weighting reduces redundancy from irrelevant scales, alleviates semantic conflicts, and
yields a unified, more discriminative feature representation.

II. C. Cross-layer semantic guidance mechanisms

Although multi-scale feature fusion enables the integration of information across different semantic levels, a significant
semantic gap often exists between shallow and deep features in practical applications. Shallow features typically lack semantic
abstraction, while deep features lose fine-grained details. Directly fusing them can introduce redundant information or
semantic conflicts, thereby limiting the model’s discriminative power. To address this issue, recent studies have explored
cross—layer semantic guidance mechanisms. The core idea is to use high-level semantic features to guide the alignment of
shallow structural representations, enabling low-level features to focus more effectively on category-relevant regions. For
instance, API-Net [28] constructs bidirectional feature vectors to model latent semantic differences between image pairs and
generates semantic gating vectors for image-level contrastive guidance. SCANet [29] introduces the HSF module, which
explicitly aligns shallow spatial details by leveraging deep semantic features through attention-based guidance, thus narrowing
the semantic gap between feature levels.

Building upon this line of research, this paper introduces a cross-layer semantic guidance mechanism on top of multi-scale
feature extraction. High-level semantic features are used as guidance signals and are explicitly propagated to multiple shallow
feature branches before fusion. This process modulates channel-wise attention responses, enabling shallow features to focus
more precisely on semantically relevant regions. Unlike prior guidance approaches that typically inject semantic cues into
limited layers or treat guidance and fusion as separate processes, our method applies lightweight channel-wise guidance
uniformly to all shallow branches prior to fusion and directly couples it with the scale-adaptive fusion module. This tight
integration enhances semantic consistency and complementarity between feature layers, leading to more discriminative and
robust fused representations.

II. D. Explicit refactoring strategies

In FGIC tasks, in addition to enhancing discriminative modeling, preserving the structural integrity of features is equally
important. To enhance the model’s capacity for capturing local features, explicit reconstruction strategies have been introduced
as auxiliary training mechanisms. These strategies formulate reconstruction tasks—such as local structural recovery —to drive
the model to maintain structural consistency in the feature space, thereby increasing sensitivity to key regions. Unlike attention
mechanisms that focus on region selection, reconstruction strategies emphasize structure preservation, making the two
approaches complementary. A representative example is DCL [30], which perturbs discriminative regions and guides the
model to reconstruct their structure, thereby indirectly strengthening its discriminative awareness of critical areas. Furthermore,
bidirectional feature reconstruction networks[31] introduce a dual-directional strategy that allows support features to
reconstruct query features and vice versa, simultaneously enhancing inter-class separability and suppressing intra—class
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variability. HFCR-Net [32] further exploits both channel-wise and spatial reconstruction to preserve fine-grained structural
information across multiple feature scales, Strengthening the model’s capacity to detect subtle distinctions.

Based on these insights, this paper introduces an explicit reconstruction mechanism as an auxiliary branch. Operating on
multi-scale fused features, it leverages both shallow structure and deep semantics to perform local structural restoration. In
contrast to previous reconstruction-based methods that operate on single-scale or part-level features and treat reconstruction
independently of fusion, our approach reconstructs each scale’s features directly from the fused representation, thereby
enforcing cross-scale consistency. This joint design not only regularizes the fusion process but also preserves semantic
integrity across layers, enhancing both the stability and interpretability of intermediate representations.

III. Methodology
III. A. Overall network structure

This study aims to establish a fine-grained image classification framework with integrated guidance and multi-scale
consistency enhancement. The backbone adopts ResNet-50 due to its clear hierarchical architecture and strong extensibility,
providing a stable semantic foundation for subsequent cross-layer guidance and multi-scale fusion. The training procedure is
divided into four stages: First, the input image is processed by the backbone to extract shallow-to-deep features (layerl—
layer4), denoted as v,, v,, v,,and v,.These features are passed through 1x1 convolutions to unify the channel dimensions,
forming aligned multi-scale intermediate representations. Second, a cross-layer semantic guidance module is introduced. It
uses the deep feature v, to enhance v,, v;, and v, through weighted attention, injecting more discriminative semantic
information into lower-level features. Third, all features are upsampled to a uniform spatial resolution and fused using a scale-
adaptive fusion module. This module employs a lightweight attention mechanism to generate adaptive fusion weights,
effectively integrating features from different scales into a unified discriminative representation. Finally, the explicit
reconstruction supervision module is incorporated during training. This branch applies reconstruction loss to all four guided
features to improve feature fidelity and cross-scale consistency. The primary task is image classification, while the auxiliary
task enforces structural reconstruction. The overall pipeline is illustrated in Figure 2.

Input Image

Resnet50
Scale-Adaptive
Fusion
Layer] ————» v2 —— —— A — — %
a
Layer2 ————* V3 ——* ——aa— —— >
GuidedBoost L)
Layer3 ——— v4 —— > 4 ——— o
[ Loyert —— v5 — — v a,

Discriminative Feature
viXxa;

i [

Reconstruction

Classification Head
Heads

|

Softmax ‘

l

CrossEntropy
Loss

[ J
¥

Total Loss

v2' v3' v4' ‘ v5' ‘

MSE Loss

Figure 2: The network structure of CARE-Net
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This study extracts multi-scale features from different layers of the ResNet-50 backbone, denoted as v, (layerl), v, (layer2),
v, (layer3), and v, (layer4). Among them, v, and v, are obtained from shallow layers and preserve more fine-grained
texture and edge information, while v, and v, are derived from deeper layers and possess stronger semantic abstraction
capabilities. In fine-grained image classification tasks, although low-level features contain abundant textures and edges, they
lack semantic expression ability and are easily affected by background noise, making it difficult to generate stable responses
in target regions.

To enhance the discriminative ability of shallow features, considering their lack of semantic information, this paper designs
a cross-layer guidance mechanism. It introduces high-level semantic features as guidance signals to enhance the discriminative
features of shallow layers, thereby alleviating the problem of semantic inconsistency and insufficient focus on key regions.

Specifically, high-level feature v, is used to guide the low-level features v,, v,, and v,. Due to spatial resolution
differences among multi-scale features, the guiding feature v, needs to be aligned to the spatial dimensions of each lower-
scale feature. First, v, is upsampled to the same spatial resolution as v, using bilinear interpolation, denoted as QS , as shown
in Equation ()

CARE-Net: A Fine-Grained Image Classification Network via Cross-Layer Semantic Recalibration

III. B. Cross-layer semantic guidance module

gs = BilinearUpsample(Vs,size =H x W) (1)

To extract the most critical semantic channels from the guidance signal and improve its discriminative precision, a
lightweight channel attention module is introduced to enhance the upsampled feature v, . Specifically, this module captures
global contextual information via global average pooling and applies two consecutive 1x1 convolutional layers with non-
linear activations to generate channel-wise importance weights. Compared to general attention mechanisms such as SE[33]
and ECA[34], the proposed structure is more lightweight and computationally efficient, making it well-suited for use as a
semantic guidance generator in compact modules. The process is defined in Equation (2):

A4 = ()'(ConleI(ReLU(Conlel(Pool(@5 ))))) (2)

Here, Pool represents the global average pooling, and o indicates Sigmoid activation.
Subsequently, the attention map is applied to the target feature v, to produce the enhanced feature v, as defined in
Equation (3)):

v=v, (142 4).i{2.3.4) )

A denotes a scaling factor that controls the strength of semantic guidance. In this study, A is set to 0.2 to preserve the
structural integrity of the target features while enabling moderate semantic injection. This parameter remains fixed during
training and is excluded from gradient updates.

The enhanced multi-scale features v,' to v,' are subsequently passed into the scale-adaptive fusion module for further
weighted integration, yielding the final discriminative feature representation. This representation provides enriched semantic
support for both classification and reconstruction tasks.

III. C. Scale adaptive fusion module

Given that a single-scale representation struggles to balance fine-grained details and high-level semantics, this module
introduces a scale-adaptive fusion strategy to further integrate semantic and detail information across different feature levels.
The core idea is to leverage high-level semantic features to dynamically weight the responses of multi-scale features, thereby
adjusting their contributions to the final discriminative representation.

Due to significant spatial resolution differences among features from different scales, direct fusion would lead to dimensional
inconsistencies, hindering effective information interaction and integration. Therefore, before applying scale-aware weighting,
all enhanced features (i-e., v, obtained in Section 3.2) are spatially aligned. To simplify computation and unify dimensions,
the resolution of the lowest-level feature v,' is used as the reference. Other features are upsampled via bilinear interpolation,
as formulated in Equation (M), to ensure consistent spatial dimensions and enable pixel-wise fusion in a shared spatial domain:

v = BilinearUpsample(v,,size = H x w) 4)

Subsequently, for each enhanced feature v,', a global semantic vector g, is extracted via global average pooling. These
vectors are then concatenated to form a feature set G = [ 2,,85:845 gs] € R*“. The aggregated vector g, representing the
overall distribution trend across scales, is computed by averaging the pooled vectors as in Equation (@) It is then concatenated
with the high-level semantic vector g, and the result is passed through a two-layer MLP followed by SoftMax function to
obtain the scale fusion weights « , as shown in Equation (@)
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a= Soﬁmax(MLP([g_;gs])) (6)

Here, @ € R* denotes the fusion weights for each scale. These weights are then used to perform a weighted combination

of the spatially aligned features, resulting in the final discriminative representation v, , as described in Equation (\7\)

v =Ya )

1II. D. Explicit reconstruction supervision module

In Section 3.3, the fused discriminative features v, were obtained. This module further guides these enhanced features to
encourage the fused representation to retain more structural details and semantic consistency, thereby improving the model’s
ability to perceive fine-grained differences.

First, these features are input into the reconstruction branches R, corresponding to the four scales, producing the
reconstructed features g,. for each scale. Each reconstruction branch uses a 1x1 convolutional layer to maintain channel
consistency and control computational complexity. Then, the semantic-enhanced target feature v;. is used as a supervisory
signal to minimize the mean squared error (MSE) between Q and v,, guiding the discriminative features to retain multi-
scale semantic information. The computation is described in Equation (\8\)

Lrﬂfﬂnzzizzsmgi_v;gz (8)

This reconstruction process not only serves as an auxiliary supervision signal to effectively enhance the semantic integrity
of the discriminative features but also mitigates the fusion conflicts between shallow texture information and deep semantic
features. By forcing the discriminative features to possess cross-scale reconstruction capability, the model learns more
discriminative and interpretable intermediate representations.

The final training objective consists of both the classification loss and the reconstruction loss, with the overall loss function
defined as:

L, =Ly + 40, L 9)

total recon recon

where L
reconstruction loss on the total loss.

This explicit reconstruction mechanism, as an auxiliary task, significantly improves the stability and structural reversibility
of the discriminative features during training. It helps alleviate the overfitting of the backbone network to category labels,
ultimately enhancing the model’s generalization and discriminative capability in fine-grained image classification tasks.

denotes the cross-entropy classification loss, and A is a hyperparameter that controls the influence of the

recon

IV. Experimental design and result analysis

1V. A. Experimental setup

IV. A. 1) Datasets

Two fine-grained image classification datasets are employed in this study: CUB-200-2011 and Stanford Dogs. The former
contains 200 bird subcategories, while the latter covers 120 dog breeds. Both datasets provide a large number of images with
detailed annotations and are widely used for evaluating the performance of fine-grained classification models. Detailed
statistics are presented in Table 1

Table 1: Datasets details

Dataset Category Training Testing Total
CUB-200-2011 200 5994 5794 11788
Stanford Dogs 120 12000 8580 20580

IV. A. 2) Evaluating indicator

To comprehensively evaluate the performance of CARE-Net on FGIC tasks, Top-1 classification accuracy and model
parameter size are adopted as the primary evaluation metrics.
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Top-1 accuracy measures the proportion of samples in the test set for which the predicted label matches the ground truth.
As one of the most commonly used and intuitive metrics, it directly reflects the model’s discriminative ability across fine-
grained categories. The calculation is defined in Equation (\10\):

ACC — N('orrect (10)

total

Where NCUVVGCI
test set.

Model parameter size reflects the structural complexity and overall scale of the model. This metric impacts not only the
training and inference efficiency but also the model’s deploy ability in resource-constrained environments. For typical deep
neural networks, the total number of parameters is the sum of all learnable parameters across layers. The parameter counts for
convolutional and fully connected layers are calculated as follows:

For convolutional layers:

denotes the number of correctly predicted samples, and N, represents the total number of samples in the

ParamsConv =K, xK xC, xC +C_ . (11)
where K, and K denote the height and width of the convolution kernel, and C, , C, , are the numbers of input and output
channels, respectively.

For fully connected layers:
P aramSF C = ln features xout features + Outfeutures (12)

IV. A. 3) Experimental details

All experiments were conducted using PyTorch 2.5.1 on Ubuntu 22.04 with Python 3.12. The training was performed on a
single NVIDIA RTX 4090D GPU, paired with a 16-core Intel Xeon Platinum 8481C CPU. CUDA 12.4 was utilized to
accelerate computation, ensuring efficient and stable training. The backbone network adopted is ResNet50, initialized with
ImageNet pre-trained weights to accelerate convergence and enhance feature representation capability. All comparison
methods were trained with identical data preprocessing and training strategies to ensure fair evaluation.

Input images were resized to 224x224, and standard data augmentation techniques were applied during training, including
random cropping and random horizontal flipping, to improve generalization. During testing, scaling and center cropping were
used for consistent evaluation. All images were normalized using ImageNet statistics: mean = [0.485, 0.456, 0.406], std =
[0.229, 0.224, 0.225].

Training was performed using the SGD optimizer with an initial learning rate of 0.005, momentum of 0.9, and weight decay
of le-4. The batch size was set to 16, and training was conducted for a total of 60 epochs. At the end of each epoch, the model
was evaluated on the validation set. This configuration was determined through preliminary tuning and demonstrated good
convergence speed and stability, making it well-suited for small-batch, fine-grained classification tasks.

When the feature reconstruction module was enabled, MSE loss was introduced as an auxiliary objective. The loss weight
coefficient A was set to 0.3, a value empirically selected to ensure training stability while significantly improving classification
accuracy. The classification task was optimized using the cross-entropy loss, and the model was trained by jointly optimizing
both classification and reconstruction losses, achieving a synergistic enhancement of multi-scale feature fusion and attention
guidance.

1V. B. Comparative experiment

Comparison experiments were conducted on two widely used benchmark datasets: CUB-200-2011 and Stanford Dogs. The
compared models cover a broad spectrum of mainstream approaches, including traditional convolutional networks (e.g.,
ResNet18, ResNet50, DenseNet201), recently proposed lightweight architectures (e.g., GhostNetV2_160, EfficientNet_b4),
and high-performance representative models (e.g., Inception_v3, Swin-Tiny, DeiT-S), thereby encompassing diverse model
scales and architectural paradigms.

As shown in the experimental results, CARE-Net achieves competitive performance on both datasets, reaching 76.6%
accuracy on CUB-200 and 75.8% on Stanford Dogs, second only to DeiT-S. Compared to the ResNet50 baseline, CARE-
Net improves classification accuracy by 1.3% and 1.2%, respectively, demonstrating the generalizability and stability of the
proposed semantic enhancement mechanism in fine-grained recognition tasks.

It is noteworthy that although CARE-Net does not currently achieve the highest absolute accuracy, it delivers results that
are very close to the top-performing DeiT-S (77.5% vs. 76.6% on CUB-200, 76.7% vs. 75.8% on Stanford Dogs) while
significantly outperforming Swin-Tiny by large margins (10.3% and 12.7% absolute gains, respectively). This demonstrates
that the proposed semantic enhancement mechanism is highly effective even without relying on advanced transformer

backbones. Nevertheless, the slight performance gap compared to DeiT-S may be largely attributed to the relatively outdated
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backbone of CARE-Net (ResNet50), which limits its ability to capture long-range dependencies and fine-grained global
context to the same extent as modern vision transformers.

In summary, CARE-Net achieves near-optimal performance while maintaining a compact model size, showcasing a

favorable trade-off between accuracy and computational cost. A promising direction for future improvement is to integrate

the proposed semantic enhancement framework with more advanced backbones —such as DeiT —potentially enabling CARE-
Net to surpass current state—of-the-art results while retaining its efficient multi-scale fusion and reconstruction modules.

CARE-Net: A Fine-Grained Image Classification Network via Cross-Layer Semantic Recalibration

Table 2: Comparative experiment on CUB-200-2011 and Stanford Dogs

Model Params (M) CUB-200 Acc (%) Stanford Dogs Acc (%)
Efficientnet_b4 19.3 76.0 75.4
Inception_v3 23.8 75.4 74.7
Densenet201 20.0 76.1 75.3
Swin-Tiny 28.3 66.3 63.1
DeiT-S 22.0 77.5 76.7
GhostnetV2_160 12.4 76.5 75.5
Resnet18 11.7 72.8 70.7
Resnet50 25.6 75.3 74.6
Care-net 25.0 76.6 75.8

1V. C. Ablation experiment
IV. C. 1) Key module ablation experiment
To measure the contribution of each essential module in CARE-Net, ablation experiments were conducted on the CUB-200-
2011 dataset. Table 3| presents the results of the comparative study, demonstrating that the inclusion of each module positively
contributes to the model’s overall classification performance. In Experiment 1, the model was trained using only the standard
ResNet50 backbone without any structural enhancements, achieving a Top-1 accuracy of 75.3%. In Experiment 2, the multi-
scale fusion module was added, resulting in a 0.3% accuracy improvement, indicating that collaborative modeling across
feature layers helps capture fine-grained differences. Experiment 3 further introduced the semantic guidance mechanism,
which utilizes high-level features to regulate and enhance lower-level representations. This led to an additional 0.4%
performance gain compared to Experiment 2, validating the effectiveness of semantic attention in modeling discriminative
regions. In Experiment 4, the feature reconstruction branch was incorporated, completing the full CARE-Net architecture. The
model achieved an accuracy of 76.6%, marking a 1.3% improvement over the baseline in Experiment 1. The reconstruction
module imposes explicit constraints across different semantic layers, enhancing feature consistency and robustness. It also
helps alleviate overfitting, delivering performance gains without significantly increasing model complexity.

These results confirm the complementary synergy among the three proposed modules and demonstrate the cumulative
performance improvements brought by progressive integration. This provides empirical evidence supporting the modular
design of the network and offers practical guidance for future architectural extensions.

Table 3: Ablation experiment of Care-net on CUB-200-2011

Experiment Multi-scale fusion Semantic guidance Reconstruction Branch Accuracy (%)
1 X X X 75.3
2 v x x 75.6
3 v v x 75.9
4 v v v 76.6

IV. C. 2) Effect of the Reconstruction Branch and the Weight Coefficient A

This section delves deeper into the effect of the reconstruction branch on the model’s performance by analyzing the effect of
varying the reconstruction loss weight coefficient A on classification accuracy. As shown in Table M, increasing A initially
improves performance, followed by a decline, with the best accuracy observed at A = 0.3. This suggests that assigning
approximately 20—30% of the total loss to the reconstruction term facilitates more effective modeling of structural consistency.
When A is too small, the reconstruction loss contributes minimally to the overall optimization, limiting the network’s ability
to leverage the structural information induced by the auxiliary reconstruction task, thereby resulting in marginal performance
gains. Conversely, a large A leads to an overemphasis on the reconstruction objective, causing the model to focus excessively
on low-level detail recovery during training. This imbalance compromises the learning of discriminative high-level semantic
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features necessary for classification. Such a shift in optimization priorities results in a misalignment between the learned
representations and the primary classification objective, ultimately degrading the model’s accuracy.

Table 4: Reconstruction loss weight experiment on CUB-200-2011

A 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50
Acc/% 76.05 76.13 76.29 76.37 76.64 76.28 75.52 74.89 74.71

IV. D. Visualization experiment
IV.D. 1) GradCAM visualization

To intuitively demonstrate the effectiveness of the proposed method, Grad-CAM is employed for comparative visualization.
Attention heatmaps generated by the backbone network ResNet50 and the proposed CARE-Net are presented for multiple
category samples. As illustrated in Figure 3, the left side of each image pair shows the heatmap produced by ResNet50, while
the right side displays that of CARE-Net. Overall, CARE-Net exhibits significantly improved attention localization compared
to ResNet50, consistently focusing on semantically meaningful and discriminative regions across most samples. For example,
in Class1 and Class2, ResNet50 produces relatively dispersed attention maps, often extending into background or irrelevant
areas, indicating semantic drift. In contrast, CARE-Net accurately concentrates on key semantic parts such as the bird’s head
and body, demonstrating stronger focus and discriminative power. In Class3, CARE-Net’s attention is more compact and less
affected by background noise, reflecting enhanced feature representation capability. In challenging cases like Class4, where
complex backgrounds and occlusions are present, ResNet50 tends to be distracted by irrelevant regions, leading to attention
misalignment. CARE-Net, however, consistently attends to the bird’s facial area, showcasing greater robustness and superior
localization of semantic regions.

Figure 3: Grad—CAM visualization comparison

IV. D. 2) T-SNE visualization

To further analyze the discriminative capacity of the model at the feature representation level, t-SNE is employed to visualize
the embedded discriminative features extracted by CARE-Net and ResNet50. The results are shown in Figure M and Figure b
where each point represents a test image in the feature space, and different colors and shapes denote different classes.

As observed from the visualization, CARE-Net demonstrates superior intra-class compactness and inter-class separability
in the feature space. Most categories form tighter and more distinct clusters in the two-dimensional space. For instance, Class
1, Class 29, Class 43, and Class 183 exhibit clear clustering boundaries, indicating that the features extracted by CARE-Net
are more discriminative and structurally coherent. In contrast, ResNet50 shows more noticeable class overlap and intra-class
dispersion in certain regions, particularly around Class 43, Class 113, and Class 155, where feature points exhibit significant
overlap and spread. This suggests that ResNet50’s feature representations lack sufficient class-wise discriminability, making
it difficult to achieve effective clustering in the low-dimensional embedding space—largely due to the absence of explicit
semantic alignment mechanisms. In summary, the t-SNE visualization provides additional evidence that CARE-Net achieves
better modeling of class boundaries and semantic clusters at the feature level, highlighting its stronger feature representation
capability and generalization potential in fine-grained image classification tasks.

s
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Figure 4: Care-net t-SNE visualization figure
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Figure 5: Resnet50 t-SNE visualization figure

V. Conclusions

This paper proposes an innovative framework for FGIC task, termed CARE-Net, which enhances the model’s ability to
perceive fine-grained variations by integrating three key components: a cross-layer semantic guidance module, a scale-
adaptive fusion mechanism, and an explicit reconstruction supervision branch. In CARE-Net, the cross-layer guidance module
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explicitly enhances shallow features using high-level semantic information, enabling the model to more precisely focus on
category-discriminative local regions. The scale-adaptive fusion module dynamically integrates multi-scale discriminative
information through a lightweight attention mechanism, producing structurally consistent and semantically unified feature
representations. The explicit reconstruction branch introduces auxiliary structural constraints to maintain semantic consistency
and structural completeness across different feature scales.

Extensive experiments demonstrate that CARE-Net achieves competitive performance on multiple fine-grained
benchmarks, while maintaining moderate model complexity, thereby exhibiting strong stability and practical applicability.

Despite achieving a favorable balance between performance and complexity, CARE-Net currently adopts ResNet-50 as its
backbone, which limits its capacity for deeper semantic modeling. In future work, the framework will be extended by
integrating more advanced backbone networks, such as Swin Transformer, to further exploit high-level semantic
representations. Moreover, additional directions will be explored, including model lightweighting and cross-modal semantic
guidance, to enhance the adaptability and generalizability of CARE-Net in more complex real-world scenarios.
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